

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT ON THE DIPLOMA IN SECONDARY EDUCATION EXAMINATION (DSEE), 2023

CHEMISTRY

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT ON THE DIPLOMA IN SECONDARY EDUCATION EXAMINATION (DSEE), 2023

732 CHEMISTRY

Published by:

The National Examinations Council of Tanzania P.O. Box 2624 Dar es Salaam -Tanzania.

© The National Examinations Council of Tanzania, 2023

All rights reserved.

TABLE OF CONTENTS

FOREWORD	iv
1.0 INTRODUCTION	1
2.0 ANALYSIS OF CANDIDATES' PERFORMANCE ON EACH QUES	STION
2.1 732/1 Chemistry 1: Theory Paper	2
2.1.1 Question 1: General Chemistry	2
2.1.2 Question 2: Chemical Kinetics, Energetics and Equilibrium	5
2.1.3 Question 3: Chemical Kinetics Energetics and Equilibrium	8
2.1.4 Question 4: Volumetric Analysis	11
2.1.5 Question 5: Electrochemistry	14
2.1.6 Question 6: Transition Metal Chemistry	18
2.1.7 Question 7: Organic Chemistry	21
2.1.8 Question 8: Analysis of O-level Chemistry Curriculum Materials.	25
2.1.9 Question 9: Planning and Preparation for Teaching	28
2.1.10 Question 10: Assessment Procedures in Chemistry	31
2.1.11 Question 11: Environmental chemistry	34
2.1.12 Question 12: Organic chemistry	
2.1.13 Question 13: Environmental Chemistry	45
2.1.14 Question 14: Volumetric Analysis	51
2.2 732/2 Chemistry 2: Practical Paper	55
2.2.1 Question 1: Volumetric Analysis	55
2.2.2 Question 2: Chemical Kinetics and Energetic	67
2.2.3 Question 3: Qualitative Analysis	81
3.0 ANALYSIS OF CANDIDATES' PERFORMANCE ON EACH TOP	IC94
3.1 Analysis of Candidates' Performance on Each Topic in Chemistry P	'aper 1
3.2 Analysis of Candidates' Performance on Each Topic in Chemistry P	aper 2
4.0 CONCLUSION	95
5.0 RECOMMENDATIONS	95
APPENDIX I	97
APPENDIX II	98

FOREWORD

The National Examinations Council of Tanzania is delighted to issue the Candidates' Item Response Analysis (CIRA) report on the Diploma in Secondary Education Examination (DSEE) 2023 in Chemistry subject. This report aims to provide feedback to student-teachers, tutors, parents, policymakers and the public in general on the candidates' performance and the extent to which the instructional objectives were met.

Principally, the candidates' responses to the examination questions indicate what the education system was able/unable to offer in the two year Diploma in Secondary Education course. Thus, it evaluates the effectiveness of the education system in general and education delivery in particular.

Specifically, the report aims to provide a clear understanding of the reasons behind the candidates' success or failure in the Chemistry subject. These include the ability to interpret the questions, follow instructions and grasp the concepts and the principles related to the subject. In addition, the report indicates that some of the candidates scored low marks because they failed to interpret the requirements of the questions, and they lacked sufficient knowledge about the concepts on which they were tested.

The National Examinations Council of Tanzania believes that, the feedback provided in this report shall serve as a basis for educational stakeholders to act appropriately to improve teaching and learning. This will ultimately improve candidates' performance in the future examinations administered by the Council.

Finally, the Council expresses its sincere gratitude to all individuals who participated in preparing this report.

Dr. Said A. Mohamed **EXECUTIVE SECRETARY**

1.0 INTRODUCTION

This report presents the performance of the candidates who sat for the DSEE 2023 in the Chemistry subject. The examination was comprised of two papers: Chemistry 1 (Theory paper) and Chemistry 2 (Practical paper). The candidates were required to answer all questions in paper 1 and 2.

The examination aimed to assess the candidates' competences in applying knowledge and skills they acquired in Chemistry to solve day-to-day life challenges, manage a chemistry laboratory and assess learners' achievement according to the contents and objectives stipulated in the syllabus.

Data analysis indicates that 851 (99.42%) out of 872 (100%) candidates who sat for the examination passed, whereas five candidates (0.6%) failed. Their overall performance in this subject in 2023 decreased by 0.14 per cent compared to 2022 where 99.56 per cent passed. Table 1 provides a comparative analysis of grade performance between 2022 and 2023.

	Candidates		Number of Candidates and Perc			nd Perce	ntage
Year	Regis tered	Passed	Grades				
		1 asscu	Α	В	С	D	F
2022	1815	1793	0	90	1121	582	8
		99.56%	0	5.0%	62.3%	32.3%	0.4%
2023	872	851	2	95	554	200	5
2023		99.42%	0.2%	10.9%	63.5%	22.9%	0.6%

Table 1: Comparison of Candidates' performance in 2022 and 2023

Table 1 shows that many candidates (62%) scored C for two consecutive years. Conversely, only 2 candidates scored A in 2023.

This report is organized into five sections: the introduction, analysis of the candidates' performance on each question, analysis of performance on each topic, conclusions and recommendations. Additionally, Appendices I and II which summarise the performance on each topics and Appendices III and IV which illustrate the comparison of the candidates' performance per topic in Chemistry 1 and Chemistry 2 in 2022 and 2023 have been embedded.

The analysis categorised the performance into three levels: good (70 - 100), average (40 - 69) and poor (0 - 39). Three colours (green, yellow and red) indicate good, average and poor performance respectively.

2.0 ANALYSIS OF CANDIDATES' PERFORMANCE ON EACH QUESTION

This part analyses the candidates' performance in Chemistry Paper 1 and 2. The analysis combines both statistical data and candidates' responses presenting the findings through figures and tables while incorporating relevant extracts from the candidates' responses.

2.1 732/1 Chemistry 1: Theory Paper

The Chemistry theory paper comprised of two sections, A and B. Section A consisted of ten short-answer questions, each carrying four (04) marks. In contrast, Section B comprised four structured questions each carrying 15 marks. The candidates were required to attempt all the questions in sections A and B. The pass mark for Section A was 2.0 while for Section B was 6.0.

2.1.1 Question 1: General Chemistry

The question required the candidates to observe/study each electronic configuration and suggest the violated rule/principle. The electronic configuration were as follows:

(a) Beryllium, Be:

_1s	2s
1↓	

(b) Carbon, C:

(c) Sodium, Na:

1s	2s		2p		<u>3s</u>
↑		1↓	↓ ↑	↓↑	

This question was attempted by all 872 (100%) candidates. Among them, 656 (75.2%) scored from 0 to 1.5 marks; 70 (8%) scored from 2.0 to 2.5 marks; and 146 (16.8%) scored from 3.0 to 4.0 marks. Their distribution of scores is summarized in Figure 1.

Figure 1: Candidates' Performance on Question 1

Figure 1 indicates that the candidates' performance on this question was weak since only 24.8 percent of the candidates passed as they scored from 2.0 to 4.0 marks.

Those who scored from 0 to 1.5 marks provided incorrect responses to most parts of the question due to lack of knowledge about electronic configuration of atoms. Their responses revealed insufficient knowledge of the rules and principles applied in filling electrons in orbitals. For instance, in part (a), one candidate incorrectly stated that *Hund's rules of maximum multiplicity was violated* in electronic configurations of beryllium and carbon. Additionally, another candidate incorrectly wrote that *the doublet rule was violated* in part (b), despite no violation of any rule or principle in this question.

Similarly, in part (c), most candidates incorrectly stated that the question violated Paul's exclusive principle, while others mistakenly wrote that Hund's rule was violated. Their incorrect responses indicated a lack of understanding of the rules/principles governing the filling of electrons in orbitals. Extract 1.1 provides an example of such incorrect response from one of the candidates.

1	JIt is Markonkoff's rule.
	aj Aufubal rule
	iii) Markonkoff's rule.

Extract 1.1: A sample of an incorrect response to question 1.

In Extract 1.1, the candidate incorrectly cited violated rules in (i) wrote Markovnikov's rule instead of Paul's exclusive principle and (ii) wrote Aufbau rule instead of Hund's rule. Additionally, in part (iii) the candidate wrongly stated Markovnikov's rule which was not relevant to the question.

The candidates who scored from 2.0 to 2.5 marks on this question demonstrated insufficient knowledge about the principles and rules that govern the filling of electrons in orbitals. Although they provided correct responses to part (a), they failed to respond to parts (b) and (c). Their responses were attributed by two electrons in 2s orbital spin in one direction.

Conversely, the candidates who scored full marks in all parts correctly identified the violated rule/principle in parts (a) and (b). For instance, one candidate noted that *the two electrons in 2s orbital spin in the same direction hence violated Paul's exclusion principle*. In part (b), another candidate explained that *two electrons in 2p are paired before the orbital is singly occupied hence violating Hund's rules of maximum multiplicity*. Moreover, the candidates recognized that in part (c), all electrons were correctly filled. Hence, no rule or principle was violated. Extract 1.2 is illustrative of a correct response from one of the candidates.

1	@ The volated rule is Pauls Exclusion principle
	which is states that, "No two (2) electrons in
	an orbital can have the same set op all four
	quantum numbers ".
	(3) The volated rule i's Hund's rule of maximum
	multiplizity, which states that " pairing is not
	allowed in an orbital sustil all its white are
	singly occupied by electron then pairing begins.
	@ NO violated rule principle because the electron
	12 configuration of sodium (Na) is written arreafly
	by observing all rules.

Extract 1.2: A sample of a correct response to question 1.

In Extract 1.2, the candidate correctly stated the violated rules in parts (a) and (b). Similarly, the candidate correctly commented that there was no violation of any rules/principle as per question requirement in part (c).

2.1.2 Question 2: Chemical Kinetics, Energetics and Equilibrium

The candidates were required to assess the effect of rate of chemical reaction in cooking some foods and preserving of fruits and vegetables in a refrigerator by using the knowledge of chemical kinetics. The question were as follows:

Justify the following facts by using the knowledge from chemical kinetics:

- (a) Some foods require higher temperature during cooking.
- (b) Fresh fruits and vegetables are stored in a refrigerator.
- (c) Some foods require baking soda (NaHCO₃) during cooking.

The question was attempted by all 872 candidates (100%). Of whom, 476 (54.6%) scored from 0 to 1.5 marks; were 182 (20.9%) scored from 2.0 to 2.5 marks; and 214 (24.5%) scored from 3.0 to 4.0 marks. The distribution of their scores on this question is shown in Figure 2.

Figure 2: Candidates' Performance on Question 2

Analysis shows that the candidates' overall performance on this question was average. Whereby 396 (45.8%) scored from 2.0 marks or above. Moreover, 476 (54.6%) of the candidates who attempted the question failed by scoring from 0 to 1.5 marks.

The candidates who scored 54.6 per cent exhibited poor performance. They provided irrelevant responses to all parts (a) to (c). For instance, in part (a), one candidate incorrectly stated that some food requires higher boiling points *because they have high boiling points*. Other candidates had a misconception that *temperature is used to increase the surface area for the reaction to take place*. The candidates failed to associate the effects of temperature on the rate of chemical reaction with the actual practice in real life situations. Similarly, in part (b), the candidates provided inappropriate explanation for storing fresh fruits and vegetables in the refrigerator. For example, one candidate wrote that fresh fruits and

vegetables are stored *in order to avoid ripening or drying*. Another candidate wrote that refrigerators *have low boiling point due to higher freezing point*.

In part (c), some candidates related the use of baking powder (NaHCO₃) during cooking with yeast in some foods such as bread. For example, one of the candidates wrote that baking powder is used during cooking *in order*

to increase food taste such as colour, texture and smell. Another candidate wrote that baking powder adds flavours and make the food soft.

Moreover, one candidate wrote that they use baking powder in cooking *to increase sodium and carbonate ions in the body,* which is incorrect. Another candidate incorrectly wrote baking powder is added *to avoid chemical change of cooked food.* Additionally, another candidate suggested that baking powder is used *to neutralize the acidic medium of food and provide the optimum temperature for the enzymes digestions in the stomach.* Their responses indicate that the candidates lacked adequate knowledge about the effects of temperature and catalyst in the rate of chemical reaction. Extract 2.1 presents a sample of an incorrect response from one of the candidates.

2	
(0)	Because energ is given our (exotheric reaction)
(5)	Because energy is given in (entothemic reations)
	, _
1 2	For neutrulization of acid.

Extract 2.1: A sample of an incorrect response to question 2.

In Extract 2.1, the candidate incorrectly wrote exothermic reaction, endothermic reaction and neutralization of acid in steady of justifying the knowledge of chemical kinetics how it is applied in cooking foods and preserving fruits.

The candidates who scored average marks on this question exhibited the existence of both relevant and irrelevant responses or answered part (a) but missed the marks in part (b). This suggests that they had insufficient knowledge of the rate of chemical reaction.

Conversely, 24.5 per cent of candidates scored full marks. These provided correct responses to all parts of the question. For instance, in part (a), one of the candidates correctly stated that *some food require higher temperature during cooking since temperature increases the rate of reactions*. Another candidate stated that *higher temperature is required in order to increase the collision of reacting particles and rate of reaction becomes faster, hence the food will be cooked within short period of time.*

These responses indicate that the candidates possessed adequate knowledge of chemical kinetics. In part (b), most of the candidates correctly wrote that storing fresh fruits and vegetables in the refrigerator slows the rate of chemical reaction of decomposing bacteria. They also noted that the lower the temperature the lower the chemical reactions. Hence, fruits and vegetables will not be affected by decomposing bacteria. Furthermore, in part (c), the candidates correctly indicated that *baking soda acts as catalyst that speed up the rate of reaction by lowering the activation energy. This helps the food to be prepared within short period of time.* Extract 2.2 is illustrative of a correct response from one of the candidates.

2	a) The some Foods require higher tomperature in
	which food cooked for the short time.
	b) Fresh Truits and vegetables are shired in a repre
	Temperature is the rate of chemical reaction
	dues not duay.
	() The baking soda (NaHCO3) act as the cata
	reaction during cooking of the food some
	P

Extract 2.2: A sample of a correct response to question 2.

In Extract 2.2, the candidate provided correct responses to all parts of the question. In part (a), the candidate correctly wrote that some food requires high temperature in cooking to increase the rate of chemical reaction, and the food is cooked in a very short time. In part (b), the candidate correctly wrote that fresh fruits and vegetables are stored in the refrigerator because its low temperature slows down the rate of chemical reaction and thus prevents the food from decaying. Similarly, in part (c), the candidates correctly showed that NaHCO₃ was used as a catalyst.

2.1.3 Question 3: Chemical Kinetics, Energetics and Equilibrium

This question intended to assess the candidates' ability to use the rate law to write the rate expression. The question asked as follows:

Study the following reactions then write the rate expression in respect to the concentration of the reactants and products:

- (a) $NO_2(g) + CO(g) \dot{a} \dot{a} \dot{a} \ddot{a} CO_2(g) + NO(g)$
- (b) $S_2O_8^{2-}(aq) + 3I^{-}(aq) \dot{a} \dot{a} \dot{a} \ddot{a} \ddot{a} 2SO_4^{2-}(aq) + I_3^{-}(aq)$
- (c) $2N_2O_5(g)$ à à \dot{a} \dot{a} $4NO_2(g) + O_2(g)$

All 872 candidates (100%) attempted this question. Their overall performance on this question was weak; only 111 (12.7%) scored 2.0 marks or above, whereas the majority 761 (87.3%) failed. Table 2 provides a detailed breakdown of the candidates' performance on this Question.

S/N	Range of scores	Total no. of candidates	Percentages of candidates
1.	0.0 - 1.5	761	87.3
2.	2.0 - 2.5	15	1.7
3.	3.0 - 4.0	96	11

Table 2: Candidates' Performance on Question 3

The majority of the candidates (87.3%) scored from 0 to 1.5 marks. They lacked sufficient knowledge of writing the rate expression. The candidates failed to interpret the requirement of the question and provided incorrect responses to almost all parts of the question. The question seems to have challenged many candidates. Hence, they wrote the rate raw equation and equilibrium constant instead of the rate expression. For example, one candidate wrote the rate law equation as follows: $Rate = K[NO_2]^m[CO]^n$. While another candidate wrote equilibrium constant as follows:

 $Rate = \frac{[CO_2][NO]}{[NO_2][CO]}.$ The two answers were contrary to the requirement of

the question; rate expression was supposed to be written as:

Rate =
$$-\frac{\Delta \left[S_2 O_8^{2^-}\right]}{\Delta t} = -\frac{1}{3} \frac{\Delta \left[I^-\right]}{\Delta t} = \frac{1}{2} \frac{\Delta \left[SO_4^{2^-}\right]}{\Delta t} = \frac{\Delta \left[I_3^-\right]}{\Delta t}$$

These responses suggest that the candidates confused between equilibrium constant, the rate law equation and rate expression. Extract 3.1 presents an incorrect response from one of the candidates.

3	(a) fate=[col][NO]
	[NOZJEWJ.
_	
	$(b) hat = [IO_4 - J^- [I_3]]$
	$\frac{5202^{2}}{5202^{2}}$
	$G_{1} P_{2} = \Gamma_{1} P_{2} T_{1} P_{2} T_{2}$
	() Kad = [NU2] [U2]
	T 0/00072.
	[10203] -

Extract 3.1: A sample of an incorrect response to question 3.

In Extract 3.1, the candidate mistakenly wrote the expression of equilibrium constant instead of the rate expression in all parts, from (a) to (c).

The candidates who scored average marks on this question managed to attempt part (a) correctly but struggled in writing the rate expression using 1,3,2 and 1 as stoichiometric coefficients in parts (b) and (c). This was attributed to candidate's inadequate knowledge of writing the rate expression.

Conversely, only 96 (11%) of the candidates scored high marks on this question. These candidates correctly showed the rate expression in all parts of the question. In part (a), they wrote the rate expression by using respective stoichiometric coefficient. Similarly, in part (b), the candidates correctly wrote the rate expression using stoichiometric coefficient of 1,3,2, and 1. For instance, one candidate wrote:

$$Rate = -\frac{\Delta \left[S_2 O_8^{2^-} \right]}{\Delta t} = -\frac{1}{3} \frac{\Delta \left[I^- \right]}{\Delta t} = \frac{1}{2} \frac{\Delta \left[S O_4^{2^-} \right]}{\Delta t} = \frac{\Delta \left[I_3^- \right]}{\Delta t}$$

Likewise, in part (c), the candidates correctly attempted the question by using the stoichiometric coefficient of 2,4, and 1. For example, one of the candidates wrote the rate expression as follows:

$$Rate = -\frac{1}{2} \frac{\Delta \left[N_2 O_5\right]}{\Delta t} = \frac{1}{4} \frac{\Delta \left[NO_2\right]}{\Delta t} = \frac{\Delta \left[O_2\right]}{\Delta t}$$

The responses given by these candidates signify that the candidates had

sufficient knowledge of writing the rate expression. Extract 3.2 presents a sample of a correct response from one of the candidates.

	THEFT
3	aj. Noz + Co = Coz + NO
	Rate expression will be.
	- A[NO2] = - A[CO] = A[CO2] = A[NO]
	At At At At.
	61. $S_2 O_8^2 + 31^2 = 2 So_{21} + 13 cm$
	Kato expressie will be
	$-\Delta [S_2 O_8^{2-1}] = - [\Delta CI^{-1}] = [\Delta S_2 O_8^{2-1}] = \Delta [I_1]$
	At 3 At 2 AF AF
	C) Rate expression will bo,
	- YA [N2 05] - YA[NO2] - A [02]
	$\frac{12}{\text{At}} - \frac{14}{\text{At}} = \frac{14}{\text{At}}$

Extract 3.2: A sample of a correct response to question 3.

In Extract 3.2, the candidate wrote correctly the rate expression in all parts (a) to (c) with their respective stoichiometric coefficients.

2.1.4 Question 4: Volumetric Analysis

This question assessed the candidates' ability in using numeric skills and manipulation of formula about the mole concept of volumetric analysis in solving different problems. The question consists of two parts, (a) and (b), and it asked as follows:

- (a) How many moles are there in 35.8 g of magnesium ribbon?
- (b) Justify that 3.58 moles of zinc granules contain 232.7 g.

All 872 (100%) candidates attempted the question. Among them, 152 (17.4%) scored from 0 to 1.5 marks; 293 (33.6%) scored from 2.0 to 2.5 marks; and 427 (49%) scored from 3.0 to 4.0 marks. The distribution of the candidates' scores on this question is shown in Figure 3.

Figure 3: Candidates' Performance on Question 4

Figure 3 shows that the candidate's performance on this question was good, with the majority 720 (82.6%) scoring 2.0 marks or above.

The analysis of the candidates' performance indicates that 427 (49%) of those who scored high marks demonstrated an adequate understanding of the question. For instance, in part (a), the candidates correctly calculated the numbers of moles of magnesium ribbon as per the requirement of the

question. In part (b), the candidates justified by using calculation that 3.58 moles of zinc granules contain 232.7g as presented by one of the candidates who calculated as follows:

1 mole of zinc contain 65g
3.58 moles of zinc contain Xg
1 mole = 65g
3.59 moles = xg
X =
$$\frac{3.58 \text{ mole} \times 65g}{1 \text{ mole}}$$
 = 232.7g
The amount present = 232.7g

The correct responses given to this question indicate that the candidates had adequate knowledge about the mole concept of volumetric analysis as Extract 4.1 shows.

4 a) Mole of magnenicium ribon = Mars of magnisium ribon (g)
Molar mars of manufacture (2)mar)
Motor mass of Mg = 249 mal, Mass = 35.8 g.
Mole = 35.89 = 1.492 mol
24. Inal
There are 1.492 moles.
b) from mole = mars (0)
Molar mass (S/mal)
Metar mass of zinc= 65 g/mol, motos of zinc=358
mole = masses
Noter mass & mal)
Mass (g) = Molisier Molar mass grad
= 3:58 mol X 65 9 mol = 23217.9.
Mass (b) = 232,79 hence subtified.

Extract 4.1: A sample of a correct response to question 4.

In Extract 4.1, the candidate correctly calculated the number of moles of magnesium ribbon in part (a). Similarly, in part (b), the candidate justified through calculation that 3.58 moles of zinc granules contain 232.7 g.

Furthermore, the candidates' responses indicate that 33.6 percent of the candidates who attempted this question had an average level of understanding of the subject matter. They demonstrated insufficient knowledge of numerical skills since they failed to compute the correct sign and units of each question, resulting in the loss of some marks. Some of candidates used the correct formula in both parts (a) and (b) but lacked mathematical skills of manipulating the data effectively.

Contrarily, 152 (17.4%) of the candidates who scored low marks provided incorrect responses to both parts. Their responses indicated that most of the candidates incorrectly wrote the formula for calculating the number of moles in part (a). For instance, one candidate incorrectly wrote: *number of moles* = mass x molar mass. Another candidate proposed that; *number of moles* = molarity x concentration. Other correctly presented the formula for finding the number of moles but failed in mathematical skills in substituting the data. For instance, one candidate wrote formula correct as follows:

Number of mole (n) =
$$\frac{mass(g)}{molar mass(g/mol)} = \frac{24g/mol}{35.8g} = 0.67mol$$

The candidate failed in substituting data into the formula; mistakenly, the

candidate divided 24g/mol by 35.8g instead of dividing 35.8g by 24 g/moles. Likewise, other candidates wrote that the *number of moles* = mass/concentration. Although this formula is used in volumetric analysis calculations, it is not correct for calculating the number of moles as per the question requirement.

Furthermore, some candidates attempted part (b) incorrectly. These candidates failed to recognize that the mass of zinc granules is the same as mass of zinc metal. For instance, one candidate wrote that *if mass of zinc metal is 65g, then mass of zinc granules is 2 x 65g = 130g*. This misunderstanding was attributed to their inadequate knowledge of the mole concept in volumetric analysis techniques. Extract 4.2 shows an incorrect response from one of the candidates.

4
(a) How many moles in 35.89 of magnisium ribbon.
Het och
Mass = 35.8a
Calculate notes.
modes = 8 x mass
S = demoty.
which was constant 1g
n= 1×85.8
no of mole of magninium vibbon was 35 moles.
(b) Find moral Molarity. of 9/mdo.
3.58/
12327
= 0:01.91mole .

Extract 4.2: A sample of an incorrect response to question 4.

In Extract 4.2, the candidate incorrectly calculated the number of moles of magnesium ribbon using the irrelevant formula that the number of moles = *density x mass*, in part (a). In part (b), the candidate wrote the incorrect formula which resulted in the wrong calculations. The candidate incorrectly calculated the molarity = 3.58/232.7 = 0.019 moles.

2.1.5 Question 5: Electrochemistry

The question assessed the candidates' ability on using principle of mechanism of buffer solution to explain what will happen if a small amount of an acid or base is added to the buffer solution. The question asked as follows:

What will happen to a buffer solution made of CH_3COOH and CH_3COONa when the following solutions are added?

- *(a) Dilute HCl*
- *(b) Dilute NaOH*

The question was attempted by all 872 candidates (100%). Among them, 790 (90.6%) scored from 0 to 1.5 marks; 51 (5.8%) scored from 2.0 to 2.5 marks; and 31 (3.6%) scored from 3.0 to 4.0 marks. Table 3 illustrate the candidates' scores on this question.

S/N	Range of scores	Total no. of candidates	Percentages of Candidates
1.	0.0 - 1.5	790	90.6
2.	2.0 - 2.5	51	5.8
3.	3.0-4.0	31	3.6

Table 3: Candidates Performance on Question 5

Table 2 shows that 790 (90.6%) scored from 0.0 to 1.5 marks; of these, 727 (83.4%) scored zero. Hence, their overall performance on this question was weak since only 82 candidates (9.4%) scored from 2.0 to 4.0 marks.

The candidates who scored low marks (0.0 to 1.5) were 90.6 per cent. These gave incorrect responses to both parts (a) and (b). For instance, while attempting part (a), one of the candidates incorrectly suggested that *dilute HCl is added in buffer solution in order to increase the concentration of hydrogen ions hence the solution will be more acidic*. Another candidate incorrectly wrote that the addition of dilute HCl leads to *nucleophilic substitution reaction whereby hydroxyl atoms from acetic acid will be replaced by Cl from dilute HCl to form acyl compound and water* as follows:

$CH_3COOH + Dil. HCl CH_3COCl + H_2O$

These responses signify that the candidates had insufficient skills in explaining the mechanisms of buffer solution that are taking place in a small addition of HCl. In this case, the candidate did not know that the nucleophilic substitution reaction takes place in organic chemistry but not in electrochemistry. The candidates did not know that the presence of acetic acid and sodium acetate may lead to nucleophilic substitution reactions when dilute HCl is added to the buffer solution.

Likewise, in part (b), the candidates had various misconceptions about the effects of adding dilute NaOH to the buffer solution. One candidate asserted that *when dilute NaOH is added in buffer solution increases the concentration of sodium ion hence solution will be more basic*. Another one wrote that addition of NaOH in the buffer solution *leads to the formation of alcohols and chlorides*. Generally, these candidates failed to describe the effects of addition both dilute HCl and NaOH in the buffer solution. These responses signify that the candidates lacked adequate knowledge about the mechanism of buffer solution as applied in electrochemistry, whereas others failed to understand the requirement of the question. Hence, they provided irrelevant responses as Extract 5.1 shows.

5	@ CH2 COOH + HCI D CH2 COOU + H20	
	CH, COONAT HCI P CH, 000" + Nacl + H+	
	In CH, coot when added the the reaction the product is	
	a cetyl chloride and water which is high acid than in CH2COONA	
	which produce acetylene, Sodium chloride and hydroxyl ion which	
	is basic in nature.	
	ⓑ CH2 COOH + Na OH → CH2 COONat + OH-	
	CH2COONO + NOOH = 2CH2COONO + OH	
1	The concentration of reaction is very high because of	
	strong base which used to react in CH2 COOH and CH1000h	

Extract 5.1: A sample of an incorrect response to question 5.

In Extract 5.1, the candidate provided incorrect response to both parts (a) and (b). For instance, in part (a), the candidate wrongly wrote that the addition of HCl leads to acetyl chloride and water which is higher acid than in CH₃COONa which produce acetylene, sodium chloride and hydroxyl ion which is basic in nature. Similarly, in part (b), the candidate explained the concentration of the reaction to be very high because of strong base, which reacts with CH₃COOH and CH₃COONa, instead of explaining the effects of pH of solution on the addition of dilute NaOH to the buffer solution.

In contrast, 5.8 per cent of the candidates had average performance on this question; they demonstrated insufficient knowledge of the buffer solution. Most of them correctly attempted one part and missed the rest of the question, hence scoring averagely.

However, only 31 (3.6%) of the candidates, who scored high marks from 3.0 to 4.0, correctly described the effects of pH when dilute HCl and dilute NaOH is added to the buffer solution. For instance, in part (a), the candidates correctly described the mechanism involved in the addition of dilute HCl to the buffer solution as one of the candidates wrote: When small amount of HCl is added to the system it ionizes completely to release H $^+$ ion and Cl^{-} ions. The H^{+} ions reacts with the acetate ions ($CH_{3}COO^{-}$) until all the added H^+ ions are finished hence the overall pH of the solution remain unchanged. Similarly, in part (b), most of the candidates correctly described the mechanism involved upon addition of dilute NaOH to a buffer solution. For example, one of the candidates explained that *upon addition of* dilute NaOH to the system, the base ionizes completely to release Na^+ ions and OH^{-} ions, the added OH^{-} ions will react with the present H^{+} ions and shift the equilibrium to the right by forcing the acetic acid to ionize and release more H^+ ions that will react until all the added OH⁻ ions are depleted and maintain the previous pH. Extract 5.2 is an example of a correct response to this question.

5	(a) when Hcl is added on
	ctto coot = ctto cos + Ht
	CHELLOOK Z CHILOF + NOT
	Hel - ++++ cl
	when the Hill is added it produce the Ht Heat will increase
	the concentration of H+ ions, and result to disturb PH value,
	hence, the reaction will proceed on backward direction
	so as to maintain the PH. value.
	BWhen dilute NaoH is added
	CH2 600H Z CH4 600- +H+
	City Looka Z (H) LOUT + NR
	NR.64 -> NRT + 6H
	When Nhot is added off is produced and result to form H20
	Hout disturb the PH value, hence reactive will proceed tward
	in order to maintain the PH value.

Extract 5.2: A sample of a correct response to question 5.

In Extract 5.2, the candidate correctly wrote that, when HCl is added it produces the H^+ that will increase the concentration of H^+ ion. Consequently, the reaction will move backwards to maintain the pH value. Similarly, in part (b), the candidates correctly wrote that, when NaOH is added, it produces OH⁻ ion which result to the formation of water. Hence, the reaction will move forward to maintain the pH value.

2.1.6 Question 6: Transition Metal Chemistry

The question required to evaluate the ability of candidates to examine the IUPAC names of the given complexes and justify the observation of each case. The IUPAC names were as follows:

- (a) $\left[\text{Fe}(\text{CN})_6 \right]^{4-}$ Hexacyanoiron(II).
- (b) $\left[Cu(NH_3)_4 \right] SO_4$ Tetraamminecopper(II) sulphate.
- (c) $\begin{bmatrix} Cr(H_2O)_4 Cl_2 \end{bmatrix} Cl$ Tetraquadichlorochromate(III) chloride.

All 872 candidates (100%) attempted the question. Among them, 478 (54.8%) scored from 0.0 to 1.5 marks, with 255 (29.2%) candidates scoring zero. Further analysis shows that 81 candidates (9.3%) scored from 2.0 to 2.5 marks, and 313 (35.9%) scored from 3.0 to 4.0 marks. Figure 4 summarizes their performance on this question.

Figure 4: Candidates' Performance on Question 6

Figure 4 indicates that their general performance on this question was average since 394 (45.2 %) of the candidates scored from 2.0 to 4.0 marks.

Analysis indicates that those who performed low marks (0.0 - 1.5) lacked adequate knowledge of the rules of naming complex compounds. They failed to justify the observed IUPAC names of the given complex compounds in parts (a) to (c) as the question required. Some of the candidates incorrectly stated the oxidation number present in each complex compound. For example, one candidate wrote that the oxidation number of *Fe is* +2 in part (a), *copper has* +2 in (b), and *chromium has* +1 in part (c). Additionally, other candidates incorrectly wrote the number of ligands in each question. For instance, one candidate incorrectly wrote that there were *six ligands* in part (a), *four ligands* in (b) and *six ligands* in complex compound (c). Their responses indicate that the candidates had inadequate knowledge of using rules in naming complex compounds according to the IUPAC names.

Similarly, some candidates knew how to name complex compounds but failed to meet the requirement of the question. For instance, one candidate wrote that the compound in part (a) *has negative charge ion which located outside the blacket hence it should be named as Hexacyanoiron*(II). Likewise, another candidate indicated that in parts (b) and (c) are *neutral compounds because do not have charged species, sulphate and Chloride are placed outside the blacket* in part (b) and (c), respectively, but all the candidates incorrectly named the compounds.

Lastly, some candidates failed to observe rules governing the naming of cationic and anionic complex compounds. They did not know that the names of cationic complex compound should end with *-ate* while anionic complex should end with *-ium*. For instance, one of the candidates' responses to part (a) incorrectly named the given complex compound *(hexacyanoiron(II)ion.* The response indicated that candidate had inadequate knowledge of naming complex compounds. Extract 6.1 shows a sample of an incorrect response from one of the candidates.

Extract 6.1: A sample of an incorrect response to question 6.

In Extract 6.1, the candidate failed to give correct names of ligands in all parts (a) to (c). For instance, the candidates wrote carbonate instead of cyanide in part (a), ammonium instead of ammine in part (b), and water instead of aqua in part (c).

Further analysis shows that 81 (9.3%) of the candidates scored from 2.0 to 2.5 marks. They partially adhered to what the question required them to do. These candidates had partial knowledge of naming complex compounds. For instance, in part (a), one of the candidates wrote *Hexacyanoferrate (III)ion*. This showed that he candidate had knowledge and skills in naming complex compounds but failed to calculate its oxidation numbers.

Moreover, 313 candidates (35.9%) had good performance; they scored from 3.0 to 4.0 marks. These candidates had sufficient knowledge of naming complex compounds. They made correct observation of the given complexes and gave relevant justifications. In part (a), one of the candidates who responded correctly to the question stated that *the named complex* compounds violated rules and principle of naming anionic complexes. The naming of anionic complexes was supposed to end with suffix 'ate' hence the correct name is Hexacyanoferrate(II)ion. In part (b),

the candidate realized *that the given name was correct since it observed all rules for naming complex compounds*. Likewise, in part (c), another candidate commented that *the given name of complex compound was not correct since, it violated rules of naming cation complexes that ends with suffix –ium (Tetraaquadichromium(III) chloride)*. Extract 6.2 presents another example of a correct response to this question.

4-
$6 a) \left[Fe(CN)_{L} \right]$
Hexacyanoiron (11) -> It is incorrect because for the
contral atom preffixes must end with ate so the
correct in Hexacyanoferrate (11) ions
$CU(NH_3)_4 \oplus SO_4$
Tetraamminecopper(11) sulphate + It is correct since
Cations are named first and the amons at last be
when too anions are to outside the brackets the name
are remain as it is.
$[c] [cr(H_2O_{\alpha}), cl_2] cl$
Detraguadichlorochromate (11) chloride + 1/ in incorrect vin
chromate can be written when chlorine can be act as
a cation and not anion hence can become as
Tetragguadichlorochtomium (111) chloride

Extract 6.2: A sample of a correct response to question 6.

In Extract 6.2, the candidate gave the correct observation and justification of the named complex compounds in parts (a) to (c).

2.1.7 Question 7: Organic Chemistry

This question required the candidates to suggest and give reason whether the reaction is free radical substitution, elimination or electrophilic addition. The reactions were as follows:

(a)
$$H_3C-CH_2 \xrightarrow{\text{Acid/heat}} H_2C=CH_2 + H_2O$$

(b) $H_2C=CH_2 + HX \xrightarrow{\text{H} X} H_2C-CH_2$
(c) $H_3C-CH_3 + X_2 \xrightarrow{\text{U.V light}} H_2C-CH_2 + HX$

The question was attempted by all 872 (100%) candidates. Among them, 509 (58.4%) scored from 3.0 to 4.0 marks; 88 (10.1%) scored from 2.0 to 2.5 marks; 275 (31.5%) scored from 0.0 to 1.5 marks, with 131 (15%) scoring zero. The distribution of their scores is summarised in Figure 5.

Figure 5: Candidates' Performance on Question 7

Figure 5 indicates that the candidates' performance on this question was average since 597 candidates (68.5%) scored from 2 to 4 marks.

A total of 509 (58.4%) candidates scored high marks (3.0 - 4.0). These candidates demonstrated adequate knowledge about all parts of the question. In part (a), one of the candidates wrote *elimination reaction since it involved the loss of water molecule from alcohol to form an alkene*. Similarly, in part (b), another candidate wrote *electrophilic addition reaction since an electrophile* (H^+) *is added first followed by nucleophile* (X). In part (c), the candidate attempted it correctly by indicating the free

radical substitution reaction. For instance, one of the candidates indicated that *the reaction involved free radical substitution reaction because a free* X' has replaced H atom from a saturated hydrocarbon (CH₃CH₃). These candidates demonstrated adequate mastery of the types of organic reaction as Extract 7.1 illustrates.

7	a) Elimination reaction since hydrogen and hydro
	Xyly ione was removed from ethanol and forming ethere
	b) Electrophiluc condition addition reaction since
	HX was added into CH2 = CH2
	C) - Thee radical substitution since X was added into
	Hyc - CHg and also HT was no mored on that Gingo
	und as replaced by inonling X.

Extract 7.1: A sample of a correct response to question 7.

In Extract 7.1, the candidate correctly identified the types of organic reaction in all three parts, (a) to (c).

Furthermore, 88 (10.1%) of the candidates who attempted this question had average performance scoring from 2 to 2.5 marks. They partially recognised the type of organic reactions by providing both relevant and irrelevant responses to all parts from (a) to (c). These varied responses indicate that the candidates had limited knowledge of organic reactions.

However, further analysis shows that 275 candidates (31.5%) performed poorly by scoring 0 to 1.5 marks. These candidates did not know type of organic reactions, and some of them misinterpreted the question. Most candidates gave incorrect answers to all part from (a) to (c). For example, in part (a), one of the candidates wrote: *Electrophilic addition reaction, due to presence of acids or heat condition*. Another candidate wrote: *Free radical substitution reaction due to presence of lone pair in water molecule*. In the other case, another candidate indicates; *it is free radical substitution due to dehydration of water molecules to form alkene, which is nucleophile, and water (neutral molecules*).

Similarly, in part (b), most of the candidates wrote irrelevant responses. This was evidenced by one candidate who wrote: Free radical substitution reaction due to tendency of lone pair in oxygen to exist at their own.

Another candidate incorrectly suggested that the *presence of free radicals* give chances for atoms to move free from one point to another combining with alkenes to form alkyl halide compounds.

In contrast, most of the candidates correctly identified the type of organic reactions and provided appropriate justifications in part (c). For instance, one of the candidates wrote: *Elimination reactions because in this reaction some of atoms are removed without replacement*. Likewise, those who attempted this part wrongly had inadequate knowledge of organic reactions. For instance, one candidate wrote that it is *elimination reaction because of the presence of U.V light that makes atoms or group of atoms to be eliminated*. Furthermore, another candidate wrote that *it is free radical substitution reaction due to the presence of one unpaired orbital in it.* Such responses imply that the candidates had inadequate knowledge of the types of organic reactions. Extract 7.2 supports this observation further.

Substitution reaction, Because ethane sub component atom which is o and writen plause an olpri enphile, an plectwophile DNM INATON. nuse al hudwapp has Vininal ompounds DARA imina Nogenation to Com paen

Extract 7.2: A sample of an incorrect response to question 7.

In Extract 7.2, the candidate incorrectly described the types organic reactions, which did not address the demand of the question.

2.1.8 Question 8: Analysis of O-level Chemistry Curriculum Materials

In this question, the candidates were required to suggest six components that are essentials to design Chemistry teacher's guide for Form II secondary school. All the 872 candidates (100%) attempted the question. Among them, 268 (30.7%) scored from 0 to 1.5 marks; 148 (17%) scored from 2.0 to 2.5 marks; and 456 (52.3%) candidates scored from 3.0 to 4.0 marks, as Figure 6 indicates.

Figure 6: Candidates' Performance on Question 8

Their overall performance on this question was good since 604 (69.3%) of the candidates scored 2.0 marks or above.

Figure 6 shows that 456 (52.3%) of the candidates scored highly from 3.0 to 4.0 marks because they were knowledgeable about O-level Chemistry curriculum materials. Thus, they met the requirement of the question. Most of these candidates correctly indicated the required components of the teacher's guide. For example, one candidate wrote: (i) *Suggestion of learning objectives, (ii) Teaching and learning resources, (iii) Teaching and learning activities, (iv) Teaching methodologies, strategies and techniques, (v) Teaching and learning aids, and (vi) Practical and learners' activities. These candidates had adequate knowledge of the O-level*

Chemistry curriculum materials. Extract 8.1 shows an example of a correct response from one of the candidates.

8	
	3 H privide suggestions of teaching and learning resources
	i) It provide suggestimi of leciching and Learning activity
	in) It provide supportions of teaching and heaving strategies
	With provide suggestions of specific objectivities
	It privide suggestions of Peaching and Learning evaluation Learning
	with must acception of teaching and lead learning acception of
	mothid a huring touching and logisting proper
	nometo attring taring and a taring pre-

Extract 8.1: A sample of a correct response to question 8.

In Extract 8.1, the candidate provided the correct responses in part (i) to (iv), with the exception of parts (v) and (vi) whose responses were unclear.

Further analysis shows that 148 (17%) of the candidates scored marks, ranging from 2.0 to 2.5 marks. Their average performance was attributed to their partial knowledge of analysis of O-level chemistry curriculum materials. Hence, the candidates wrote both correct and incorrect responses scoring average marks.

In contrast, the candidates whose performance on this question was poor provided answers that did not address the requirements of the question. For instance, one candidate wrote the characteristics of teaching aids, such as the *quality of the guide, accessibility, portability, nature of the learners and durability*. This candidate wrongly considered the teacher's guide similar to teaching aids. While another candidate indicated *topic, sub topic, publisher, year of publication, name of the author,* and *place of publication*. These responses indicate a confusion between the components of the teacher's guide and features to consider when writing references.

Likewise, some candidates listed factors for curriculum development rather than a teacher's guide. For instance, one of the candidates wrote: Philosophy of the country, political ideology, nature of subject matter, curriculum of the country and needs of the society. Furthermore, other candidates confused curriculum materials with teaching materials when describing the components of teacher's guide. For instance, one candidate listed: Syllabus, teacher's manual, textbook, scheme of work, lesson plan and lesson notes. The first three items are examples of curriculum materials, whereas the last three are teaching and learning materials. This misconception arises from viewing the teacher's guide as a type of curriculum materials. Further analysis shows that some candidates indicated preliminary information of the book rather than the teachers' guide components. For instance, one candidate wrote: Cover page, name of the guide, author, title of the guide, table of content, and organization of chapters. Another candidate wrote; teachers guide is used by teachers alone while teacher's manual is used by both teachers and students. Although the candidates gave correct statements on the differences between the teacher's guide and teacher's manual they were contrary to the requirements of the question. Generally, candidates lacked adequate knowledge of the O-level Chemistry Curriculum Materials. Thus. They failed to address the requirements of the question. Extract 8.2 exemplifies this observation further

8	the Allowing grethe edential for the Builde.
1	i) challe be relevance to the wer
	ii) should be simplicity
	iii) Should be clarify
	iv) schould be efficient
	v) chould be valid
	vi) thould be reliable.

Extract 8.2: A sample of an incorrect response to question 8.

In Extract 8.2, the candidate incorrectly outlined *simplicity, clarity, valid,* and *reliable,* which are characteristics of a good test. Other two points *relevant to the user* and *efficient* did not relate to the essential features of the teacher's guide.

2.1.9 Question 9: Planning and Preparation for Teaching

The question required to assess the ability of candidates to explain significance of ICT in the teaching of Chemistry. The question were as follows;

The introduction of ICT has brought the development in different areas, especially the educational sector. Briefly explain any four significance of ICT in the teaching of Chemistry.

The question was attempted by all 872 (100%) candidates. Among them, 768 (88%) scored from 3.0 to 4.0 marks; 72 (8.3%) scored from 2.0 to 2.5 marks; and 32 (3.7%) scored from 0 to 1.5 marks. Their performance on this question is summarised in Figure 7.

Figure 7: Candidates' Performance on Question 9

Figure 7 indicates that the candidates' general performance on this question was good as 840 (96.3%) scored 2.0 marks or above. Among these, 607 (69.6%) scored full marks. Only 32 (3.7%) of the candidates failed by scoring from 0 to 1.5 marks.

A total of 768 candidates (88%) scored high marks on this question. These candidates demonstrated adequate mastery of planning and preparation for teaching. They correctly highlighted the significance of ICT in teaching of Chemistry. For instance, one of the candidates stated: (a) ICT increases the level of understanding of the lesson (b) it also increases students' interest

towards the lesson (c) it reduces verbal words to the teachers and (d) it also increases independent study. Such responses indicate their adequate knowledge about the application of Information and Communications Technology (ICT) in teaching and learning Chemistry as Extract 9.1 illustrates.

9 Significance of ICT
(i) It singlify toget in a flored pour
Forexample the use of simulation process
Computer aided programs such as driff which
Simply leaching and leaving proces,
111. It facilitate distance learning example
teleconferencing through the use of Internet
(1) It solve the scarpity of teacher, this is
due to the use of 1ct programs such as
to concer programs
(1V)- It save time; Forexample the use of Computer
a during leaching and learning if Sare time of delivers Fol

Extract 9.1: A sample of a correct response to question 9.

In Extract 9.1, the candidates correctly wrote it simplify teaching and learning, facilitates distance learning, and saves time. The candidate provided the relevant point example the use of a projector by one teacher to teach large group of students that would require several streams with many teachers.

Further analysis indicates that those candidates with average scores provided partially correct answers. Some candidates wrote both relevant and irrelevant points on significance of ICT in teaching Chemistry. For instance, one candidate wrote that *ICT is used to simplify understand of abstract concepts by the use of animation and simulations, motivates teaching and learning to both teachers and students, it important in employment and promote entertainment.* The first two points were correctly stated while the

last two points were incorrect. The responses given showed that the candidates possess some ICT skills however, failed to understand the requirement of the question.

However, 32 candidates (3.7%) had poor performance on the question. Their scores ranged from 0 to 1.5 marks. Among them, 07 (0.8%) scored zero. These candidates lacked relevant skills in using ICT in teaching and learning Chemistry. Some of the candidates misunderstood the question focusing on listing ICT devices rather than explaining the significance of ICT for teaching and learning Chemistry. For instance, one candidate mentioned: *(i) computer, (ii) projectors, (iii) pointer, (iv) projector screen.* Although the candidate knew which ICT devices are used in teaching and learning, their responses did not address the requirement of the question.

Others incorrectly outlined various fields/subjects/sectors where ICT could be applied. Examples include: *(i) in mathematical sectors, (ii) in medical field (iii) physics subjects and (iv) industrial sectors.* Such responses indicate a lack of proper understanding of the question's requirement as Extract 9.2 shows it further.

9 Guit house for employment
- Due to that from ICT, information
and communication technology people
apping sulary so as to get ompinment
(3) It heips for facilitation of business
Sectors
Gin It Lesed For improvement of infrastructure
due to road, ran lovery
(iv) It hope For mathitany sectors
Dreeto giving information from
one to gropper.
() It brins and promote cooperation
and entertainment to the people.

Extract 9.2: A sample of an incorrect response to question 9.

In Extract 9.2, the candidate incorrectly outlined the application of ICT in other domains like employment, business, military and entertainment.

2.1.10 Question 10: Assessment Procedures in Chemistry

This question was intended to evaluate the candidates' ability in using results from the Chemistry test to calculate the spread for each of the test scores. The question asked as follows:

Suppose you have administered Chemistry tests among Form II and III students and the results were as follows:

Form II: 65, 67, 95, 41, 25, 55, 41, 71, 41 and 51.

Form III: 77, 67, 66, 71, 68, 72, 69, 75, 61 and 76.

a) Calculate the spread for each of the test scores.

b) What do the two spread values in 10 (a) mean?

Since the question was compulsory, all the 872 (100%) candidates attempted it. Of whom, 822 (94.3%) scored from 0 to 1.5 marks; 31 (3.6%) scored from 2.0 to 2.5 marks; and 19 (2.2%) scored from 3.0 to 4.0 marks. Only 15 candidates (1.7%) scored full marks. The distribution of their scores is shown in Figure 8.

Figure 8: Candidates' Performance on Question 10

Figure 8 shows that the candidates' performance on this question was weak since 822 (94.3%) scored from 0 to 1.5 marks, with 810 (92.9%) score zero.

Analysis indicates that 94.3 per cent of them incorrectly responded to the question. These candidates failed to calculate the spread of each test scores in part (a). Their failure was attributed to their misconception of the key
word used *spread* in both parts (a) and (b). The candidates interpreted *spread* as mean scores. Thus, they incorrectly calculated the mean score of the test rather than *spread*. One of the candidates responded as follows;

In Form II, Mean =
$$\frac{65 + 67 + 95 + 41 + 25 + 55 + 41 + 71 + 41 + 51}{10}$$
$$= 55.2$$

Therefore, the required mean score is 55.2 marks.

Similarly, in Form III
Mean =
$$\frac{77 + 67 + 66 + 71 + 68 + 72 + 69 + 75 + 61 + 76}{10} = \frac{10}{69.9}$$

Therefore, the mean score is 69.9 marks.

Additionally, other candidates skipped the question. This signify lack of knowledge on assessment procedures in Chemistry. However, others correctly calculated the spread of test scores in Form II and III in part (a). This was done by calculating the difference between the highest scores and the lowest scores. However, the same candidate missed the marks allotted to part (b), because of failure to interpret the two spread values obtained in part (a); hence, the candidate did not score the full marks. Extract 10.1 illustrates such an incorrect response to this question.

10 FORM 1: 65,67,9541,25	55.41.71 41 and 51
from 1: 77, 67, 66, 7168	72 69.75 61 and 76.
(a) Required to cafculate It	ie spread for each y test score.
Four Form II!	for forme II
Spread (d) = X-X	$(e) = x - \overline{x}$
n n	·
(4) = 431 - 4311	(1) = To2-70.2
0	ω
(a) = 38.79	··· (P)= 63.18
· The spread in forme IL is	(b) for form II, the open of
38.79.	means it has spreaded had more
	From means while in Firm III, It has
	devented (sproaded) more from man.

Extract 10.1: A sample of an incorrect response to question 10.

In Extract 10.1, the candidate incorrectly calculated the mean scores instead of spread from the given Forms II and III data in part (a). In part (b), the candidate incorrectly commented that for Form II the spread means it has spread not more from mean values while in Form III it has diverted more from the mean.

However, 31 (3.6%) of the candidates scored averagely on this question. Some of them lacked mathematical skills; hence, they failed to calculate the spread of the students' scores. Others correctly calculated the spread but failed to interpret the values obtained.

Conversely, 19 candidates (2.2%) demonstrated good performance on this question. They provided correct responses to both parts (a) and (b) of the question. This indicated that they knew how to standardise test scores. For instance, one of the candidates correctly calculated the spread scores for each of the test scores in Form II and III to *get 70 and 16 respectively* in part (a). This was done by calculating the differences between the highest and lowest scores. Similarly, in part (b), the candidates correctly interpreted the spread values obtained in part (a). In Form II, there were noticeable differences in the students' score value spread of 70. This value implies that there were both students with higher abilities and students with lower abilities. In contrast, there were margin differences in students' scores range value of 16 in Form III. This implies that the students' abilities in this class were relatively similar. Extract 10.2 presents a sample of a correct response from one of the candidates.

10	(a)
	Spead for Form II = high score - Low score
	= 95 - 245
	= 76
	The spieced for Form i = 70
	form jii = 77-61
	= 16
	The spead for form II is 16,
	16) The space for form I mean that in the class these
	au learner of defend ability; bower achiever and higher
	achiever but for form [11; there are learner & equal or
	the same learning chility or achievement.

Extract 10.2: A sample of a correct response to question 10.

In Extract 10.2, the candidate gave relevant responses to both parts (a) and (b).

2.1.11 Question 11: Environmental Chemistry

This question was intended to test the candidates' ability to overcome problems caused by water pollution. The question asked as follows:

Bondeni Village is facing a serious water pollution problem in its water sources. Suggest six ways to overcome the problem.

The question was attempted by all 872 (100%) candidates. Among them, 736 (84.4%) scored from 10.5 to 15.0 marks, with 100 (11.5%) scoring full marks; 130 (14.9%) scored from 6.0 to 10.0 marks; and 06 (0.7%) scored from 0.5 to 5.5 marks. Table 4 summarises their performance on this question.

S/N	Range of scores	Total no. of candidates	Percentages of Candidates
1.	0.0 - 5.5	06	0.7
2.	6.0 – 10.0	130	14.9
3.	10.5 - 15.0	736	84.4

Table 4: Candidates Performance on Question 11

Table 4 indicates that the overall performance on this question was good since 866 (99.3%) of the candidates scored average or above, whereas 06 candidates (0.7%) failed by scoring from 0 to 5.5 marks.

Furthermore, the analysis shows that 736 (84.4%) of the candidates scored high marks on this question. These candidates comprehended the question and provided relevant responses about the measures for controlling water pollution. For instance, one candidate correctly explained six control measures as follows: (i) *People should avoid discharge sewage wastes from domestic to the water bodies,* (ii) *People should find alternative ways for wastes disposal,* (iii) *Proper use of industrial fertilizer,* (iv) *Continuous environmental education to the people,* (v) *Enactment of by-laws* (vi) *reducing deforestation around the water sources.* These responses reflect sufficient knowledge of environmental degradation and water pollution. Extract 11.1 shows a sample of a correct response from one of the candidates.

11	Water polly him I the addition of unwanted
	materials in silver of water such as lake, mu;
	ocean as well as Tim. Univanted materiels -
	which a trave lead to the water pollwhoir as follow
	chemizels from insertry, surt, say well as plastic material.
	Bondeni Village can we the following wars
	in order to arcome the prollem of water pollution:
	Proper method of forming Thear to the some,
	of water, Good methods of forming near to the
	Sources of water its very inspectary because par
	methods of farming the shipping Culhichois Can-
	increase the existance of water pollution to the water.
	Reventing the industrial chemicals releasing
ļ	to the source of water, In Sustrial activities such
	as mining affirities can en involves high amount
	of chemical released so that the chemicals releasing
	should be proper handling to prevent water follation.
	freiening ourgraning near to the sources of
	Waters, averagearing can increase amount of sight
	and impusite substance is water sources here to provert
	exaris amount of better can reliering water pollution.
	Toper methods of fishing, Bondeni Village
	should required to kine proper method of-
	At thisking and to avoid your me that of Atshing
	like the use of Somb Luning Arhung aitrobies.
	Avoiding Cutting of plants or trees near
	We some of water, 15on den skie village should -
	required for avoiding the cutting of trees or ylands
	near the sormer of water because the east forest
	of plants andorphees can preventing water from injurity
	and make water vare for use we ful autor Ker.

11 Cont.	Encouraging ecueation of environmental -
	Conservchin based on sourcest of water Bonden
	Village can average the publicand of empiricater
	pollations when each my people or member within-
	the common village can be used aver about enorments
	conservatus of in water sources which an help to
	evolving the mollems of water pollution.
	Finally Hoter pollution to have different
	negative injent to the prvironment among of
	these are Low of acquality organisms like the
	Also spread of directes with as cheleron. Itorice the
	transmert should be ever tand onste policy
	a about "environmended conservation".

Extract 11.1: A sample of a correct response to question 11.

In Extract 11.1, candidates correctly described control measures for water pollution as per the requirement of the question.

Further analysis reveals that 130 (14.9%) of the candidates scored averagely from 6 to 10 marks. These candidates' responses were partially correct. They either gave less than the required points or mixed correct and incorrect points with irrelevant descriptions.

Conversely, $06 \quad (0.7\%)$ of the candidates demonstrated inadequate knowledge of water pollution; therefore, they scored from 0 to 5.5 marks. These scores were attributed by insufficient (few) points as required by the question. The majority of the candidates incorrectly explained the control measures to overcome the water pollution problem. For example, one candidate incorrectly wrote: Water pollution could be overcomed by treating water bodies with detergents and water guard. Similarly, another candidate wrote: Irrigation activities should be stopped as incorrect answer. The candidates intended to suggest poor irrigation schemes that pollute water. Besides, a few candidates confused water with land pollution. For instance, one candidate erroneously suggested the use of incineration methods in order to control water pollution. However, incineration is used for burning of harmful solid materials. All these responses revealed that the candidates had insufficient knowledge of environmental degradation and their control measures. An example of an incorrect response is shown in Extract 11.2.

11 cont. Avoid people in bad use of water!
Due to this we can see in order to stop
water pollution we should avoid people who
are using water in bad situation like
throwing dust, comming due to this an
cause pollutant in water to we should avoid it
Government Support in putting
Security in Some areas' Due to this we
can prevent the water pollution due to the
presence of Securities can help to scared the
people in dirtigy the water.
Avoid soil eroi on Due to this
we can see that the presence of soil erosing
can lead in water pollution in our environment
to we should progree prevent it for the better
Use in other day in our society,
11 cont. To malte own place for the
pupple who practice with agriculture
due to this point so as to avoid the
Polluppo of mater.
To malke bus Source of water
to the people bour engaging with construction
Sur to this paint pertha people have
Practice in contraction of houses can
also have their own water source
is at the aveid weather pollytion
Generally recater pollution is
Company in the Village place to
1 advize all the people from the
Willow to be aware with that who to
Hand mater claan

Extract 11.2: A sample of an incorrect response to question 11.

In Extract 11.2, the candidate described incorrect points, contrary to the requirement of the question. This that candidate lacked sufficient knowledge about environmental chemistry.

2.1.12 Question 12: Organic chemistry

The question required the candidates' ability of using knowledge obtained from organic chemistry to demonstrate types of isomers exhibited by alkenes and draw structure and IUPAC names from dehydration of alkenes. The question asked as follows:

- (a) Explain the phenomenon of isomerism.
- (b) Outline the two types of isomers exhibited by alkenes by citing one example in each.
- (c) Draw and give the IUPAC names of alkenes that will be obtained from the dehydration of the following compounds:
 - (i) 2 methylpentan-3-ol
 - (ii) Propan 2 ol
 - (iii) 3-methylbutan -2 ol
 - (iv) 4,5 dimethylhexan 3 ol

This question was compulsory, and all 872 candidates attempted it. Among them, 596 (68.3%) scored from 0 to 5.5 marks; with 220 (25.2%) scoring zero; 216 (24.8%) scored from 6.0 to 10 marks; and 60 candidates (6.9%) scored from 10.5 to 15 marks. Their performance on this question is summarised in Figure 9.

Figure 9: Candidates' Performance on Question 12

Figure 9 indicates that the candidates' overall performance on this question was weak since only 31.7 per cent of them scored 6 marks or above.

Their performances indicate that 596 (68.3%) of them scored from 0 to 5.5 marks. The candidates explained the concept of isomerism incorrectly. They confused the key term '*isomerism*' with '*isomers*' in part (a). Most of them incorrectly defined isomers instead of isomerism. For instance, one candidate defined isomerism as *organic compounds of the same molecular formula but different in structural formula*. In addition, another candidate wrote: *The process of shifting of position of arrows in a compound*. Some of these candidates defined isomerism as *the breaking down of the compound to obtain other compound by changing of the substituent group*. The candidates' responses indicated that they had limited knowledge of isomerism of hydrocarbons. Thus, they failed to explain it as used in hydrocarbons.

In part (b), most of the candidates gave irrelevant responses about two types of alkene exhibited by alkenes compounds. For example, one candidate incorrectly mentioned *unsaturated alkane and saturated alkene*. This response reflects their inadequate knowledge of the concept of unsaturated alkane and saturated alkene. Another candidate wrote *multiple bond* and *pi-bond*. These two terms used interchangeably, meaning the organic compound containing more than one bond. A few others also indicated sub-classes of alkenes exhibited in geometrical isomerism. For example, one of the candidate wrote *cis- and trans alkenes*. Their responses focused on one out of the two types of isomers exhibited by alkenes. Therefore, they partially attempted the question because they focused on only one aspect.

Additionally, in part (c), candidates incorrectly wrote the IUPAC names of alcohol compounds instead of naming the structures of alkenes obtained due to alcoholic dehydration. For instance, one candidate copied the given names of organic compounds in items (i) to (iv) and wrongly wrote (i) *2-methylpentan-3-ol* and (ii) *propa-2-ol*. Others converted alcohols to alkenes but provided incorrect structures and IUPAC names of the alkene compound formed. For instance, one candidate named: (i) *3-methylbut-3-ene* (ii) *Prop-2-ene* (iii) *3-methylbut-2-ene*. All these responses revealed the candidates' insufficient knowledge of organic chemistry. Extract 12.1 shows a sample of an incorrect response to this question.

Extract 12.1: A sample of an incorrect response to question 12.

In Extract 12.1, the candidate gave an incorrect definition of isomerism in part (a). In addition, they candidate failed to state the types of isomers in alkene in part (b); instead, the candidate mentioned the groups of hydrocarbons, alkane and alkenes. Furthermore, the candidate failed to present the structural formula of alkene and draw the incorrect structures in part (c).

Besides, the candidates who scored average marks on this question had limited knowledge of organic chemistry. Most of them correctly attempted part (a) but failed in parts (b) and (c). Others provided both relevant and irrelevant responses to parts (a), (b) and (c); hence, they missed some marks and scored averagely.

Conversely, 60 candidates (6.6%) scored high marks. These correctly responded to all or some parts of the question. Their correct responses stemmed from their good mastery of organic chemistry. For example, one candidate correctly defined isomerism as the existence of same compounds in different structural formula in part (a) and mentioned positional isomerism which is characterized by differing in position of the double bond in part (b), such as, but-2-ene and but-1-ene. The second was geometrical isomerism where restricts on rotation of the molecules as a results of attached molecules experiences different orientations including cis- and trans-isomerism for instance, cis-but-2-ene and trans -but-2-ene. Similarly, in part (c) the candidates gave correct IUPAC names to compounds (i) to (iv). For instance, one candidate named the given compounds as follows: (i) 2-methylpent-2-ene, (ii) Prop-1-ene, (iii) 2methylbut-2-ene and (iv) 2,3-dimethylhex-3-ene. Generally, these relevant responses indicated the candidates' adequate knowledge of organic chemistry. Extract 12.2 is a sample of a correct response from one of the candidates

(2) bomenism repers to the process of forming a Compounds that have the same materially march but degress in chemical reaction and arrangement of atoms. Example effection-effec 12 (2-methylpropane) (b) (i) geometrical isomerism. CH; â43 CHa C=C e = 0 lety. H H. Trans yomer Cir Womer Positional Komerism. (3) CH=CHCHeHCH prentene. CH, CH, CH= CH CH, penta-ene O2-mettypentan -3-01. 04 deligitation HE-G=CH-OBECHS + 160 HC-at-at-at-at-Cone Hallos citz Cth 2-methylpent-2-ene or HC-CH-CH=CHCH +HOO CH2 2-methylpent-2-ene

12 Cont. (ii) Dropan - 2-0. H.C=CH Nelhudrotion. H200 t CH roo-1-ene 3-methylbutan-2-01 (ùi) OH theuter ĊH H3C. CH c = c H3-methyllout-1-ene OR $H_{-}C - d = c$ 4 40 CH. C# 2-methylbut-2-ene. 4,5 - dimetlythexan-3-01 (ພ) CH3 CH2 dehydration. H3C. CH-CH=CH OH 2,3-dimethylhex-3-ene OR -Cete 4.5-dime

Extract 12.2: A sample of a correct response to question 12.

In Extract 12.2, the candidate correctly presented the answer in parts (b) and (c). However, the candidate used the term 'process' instead of 'existence' in defining isomerism. Therefore, the response to part (a) cannot be considered the best definition of isomerism.

2.1.13 Question 13: Environmental Chemistry

This question had two parts (a) and (b), in part (a), the question tested candidates' ability to justify the statement that advancement in chemistry resulted into more negative impacts on the environment. And in part (b), the candidate required to identify six teaching and learning materials. All 872 (100%) candidates attempted the question. The data in Figure 10 shows that 39 (4.5%) of the candidates scored from 10.5 to 15.0 marks; 661 (75.8%) scored from 6.0 to 10.0 marks; and 172 (19.7%) scored from 0.0 to 5.5 marks.

Figure 10: Candidates' Performance on Question 13

Analysis shows that their overall performance on this question was good because 80.3 per cent of all the candidates who attempted this question scored average or good marks.

The analysis of their responses indicates that 4.5 per cent of those who scored from 10.5 to 15.0 marks demonstrated a good mastery of environmental chemistry in parts (a). In this part, the candidates correctly identified harmful chemical substances (pollutants) introduced into the environment due to the advancement of chemistry. Most of them correctly indicated several impacts of the advancement of Chemistry on the environment. For example, one candidate described *manufacture and use of pesticides, fertilizers and herbicides pollutes the environment; manufacture of chemicals such as mercury and cyanides affect the environment;*

exploration of fossil fuels which are used in engines for automobiles release gases such as CO and CO₂; the use nuclear energies has exposed the world into exposure of harmful rays and radioactive remains, and manufacture and use of chlorofluorocarbons (CFCs) in the air conditions and refrigerators release gases that are harmful to the ozone and contributes to greenhouse effects. These responses portrayed their good mastery of environment chemistry.

Likewise, in part (b), they correctly identified the required teaching and learning materials. One of the candidates listed *chalks, papers, pen, exercise books and subject books, projector, duster* and *ruler*. Such responses indicate that the candidates had adequate knowledge of teaching and learning materials. Extract 13.1 presents a sample of a correct response from one of the candidates.

13	Environment 1: The rotal surrounding of
	Mans. The following are the negapier in
6).	Parts resulted by the advancements chemistr
2	y as follow -
-	Acidia Soil. Due to the results of wing
	fortilizers whiteunfaity enough hydrogen (HT)
	Tans and hence may cause to the partie
	reg the soil manage its PH to coordi
	nafe.
	Acializ rain. Also a among of the
	regative Euppart of the advancement of
	Chemistry and hence it may louse to the
	changes of climatic conditions to the grat
	extent.

like Cancer. Actions tuman difeases, advancement of cheul ho tota lead and ili h neine hunas 115 problem 4 ¢ı, ь 22 amiddia Destruc Ozone 91 over. aus Ten chatrias ouizs an eine apa 120 601 a G es. an forces Organism. recult 2 a DISALA 11.161 rercury other angevous organism 10 netarly advancemen Sum 4P the cheurstry Couse negative in pact but whith include Fi LO mpart Medicine illneu Mertins 13 Cont. tiles R LOn coves dianle SQS Sn mile ses GLO ator n/ sc ime in Sta. DS leaning materials ider qte ÷ alks N icard.

Extract 13.1: A sample of a correct response to question13.

In Extract 13.1, the candidates presented some correct responses to parts (a) and (b) of the question. However, they did not clearly explain human diseases like cancer in part (b).

Furthermore, the candidates who scored below average marks on this question misunderstood the requirement of the question. Some of them provided either weak points or strong points with weak explanations. Moreover, some of them misinterpreted the question and discussed the positive impacts of the advancement in chemistry.

However, the candidates who scored low marks from (0 - 5.5) gave responses that were contrary to the demands of the question. In part (a), one candidate incorrectly mentioned *deforestation, bare land, increase poverty, hunger, and droughts as* environmental impacts caused by chemistry advancement. Another candidate incorrectly stated *underdevelopment, visual disability,* and *increase poverty.* The candidates wrote mixed both correct and incorrect responses that could not be justified. These responses revealed that they had inadequate knowledge of the negative environmental impact of chemistry advancements.

Similarly, in part (b), most of the candidates did not understand the term *materials* as used in the context of this question. Different candidates attached various interpretation to the word materials. Most candidates linked it with curriculum materials, others with teaching aids, and a few others with teaching and learning documents. Those who wrongly perceived it as components of curriculum materials listed of O-level Chemistry curriculum materials. For instance, one candidate incorrectly listed (i) *chemistry syllabus*, (ii) *chemistry textbooks*, (iii) *teachers' guide*, and (iv) *teacher manual*. Conversely, others mixed both correct and incorrect responses; hence, they did not score full marks.

Similarly, those who considered it as teaching aids wrongly stated *seeds*, *fruits, stones, bottle tops, perishable good* and *improvised boxes or bottles*. Others indicated teaching and learning documents instead of teaching and learning materials. For example, one candidate incorrectly listed *lesson notes, lesson plans, class journal, logbook* and *scheme of work*. Additionally, another candidate mistakenly mentioned *charts, models, articles, journals* and *audio-visual*. Those candidates had adequate knowledge of planning and preparation for teaching, but they failed to respond according the context and the requirement of the question as Extract 13.2 illustrates.

13	a training the set the set
10	a Environment sig all thing is that sorrounding in
	human being trample Air, houses, Waller, and trees
	this things it help the human to survival to the
	environment and there are two types of environment
	which are Natural environment and artificial environment
	which can help all human to durvival. The following
	are the imposed of the environment which are.
	Increase of burning forest, when the human
	can buining the forest can dest cause the onvironment so
	environment can cause the air pollution example oxygen
	Lack to the human due to destruct the environment to the
	human
	Increase of crasing the animal in the small area,
	This are the Overcrasing increasing due to the people
-	can beoping the animal to the small area can affected the
	environment also can cause the decesse to human example
	The dealease which can cause to human.
	Increase the digging in the small same crops in the
	Same area, so that when digits the same crops in the same
	are can cause the environment soft also the soft can
	be lade of forkliver because the digiting the farmer in
	the same area so can increase the environment distants
	Increase the atting down trees without
	replacement, also when we are cutting down trees without
	rophicement can affected the environment example Deporent-
	ation when the people can authing down the tree without
	replacement.
	Increase the population of people in the area also
	When the posplo antihave high large number of people
	the same area which can lead the environment
	also the number of people in the area can be
	lack of oxygon and some of people can death.

-	
	Finally The are the range of the onring
	environment which help the human being to
	survival their fitness also can be support the
	people also to the the another activities when the
	people come to affect the environment like cutting
	down tree without the replacement of another
	froos .
	·
	(b) Interview is the conversion time which
	suppose the oral prosontation between one people
	and another people also the interview nood the
	face N face when asking the question there
	are two types of interview which are structure
	red, sems structured and unstructured The following
	gre the material which used to itentify
	identify toaching and Loarning material which
	are
	Syllabus, Is the book which specify the pathadar
	metinal at the different Lovel also the out
	Quample of the sollabus which are tom & Level
	Which of labus antain the form up to form four
	so this the sullabus can help ben to reensitis the
	tracking and Louining Malinal
	Supplementary malenal, one the malenal Unicy
	hup the toucher to leaching the more effective
	and that are the supplementary which can
	guille you when beaching and rearning the meilenal
	the adjust tolo le tola adviset
	The agriving which the produce putter parts
	when any example in the praising so that are the

Extract 13.2: A sample of an incorrect response to question 13.

In Extract 13.2, the candidate provided irrelevant responses such as burning forests, increase overgrazing, increase of digging in the same crop, cutting down tree and increase in population. These responses did not relate to negative environmental impacts of the advancement of chemistry.

2.1.14 Question 14: Volumetric Analysis

This question required the candidates to evaluate the effectiveness of anhydrous sodium carbonate as primary standard reagent in standardizing hydrochloric acid. The question asked as follows;

Always primary standard reagents are used to standardize secondary standard reagents. In four points, evaluate the effectiveness of anhydrous sodium carbonate in standardizing hydrochloric acid.

The question was attempted by all 872 candidates (100%); whom, 572 (65.6%) scored from 0.5 to 5.5 marks; 156 (17.9%) scored from 6.0 to 10 marks; and 144 (16.5%) scored from 10.5 to 15.0 marks, with 05 (0.6%) scoring full marks. The candidates' performance on this question is summarised in Figure 11.

Figure 11: Candidates' Performance on Question 14

The analysis of data indicates that 300 (34.4%) of the candidates scored from 6.0 to 15.0 marks. Thus, their overall performance of candidates on this question was weak.

Analysis indicated further that 65.6 percent of the candidates scored below the pass mark level of 02. The majority of the candidates did not address the key issues of question. For instance, one candidate mentioned *anhydrous sodium carbonate is used to react with acid to form salt and* *water*. This response was incorrect because the uses of anhydrous carbonate were not the requirement of the question. Likewise, another candidate incorrectly responded that *sodium carbonate is effective because it reacts with hydrochloric acid*. These responses implied that candidate had inadequate knowledge about the characteristics of primary reagents. Extract 14.1 shows a sample of an incorrect response from one of the candidates.

L	
14	
	No. $(O_{2} + 2HC) = - p2NaCl + H_{2}O + (O_{2})$
	(a2) (c2) (c) (g)
	il measure the mass of anaydrans
	sochum carbonate
	iil measure the volume of water that
	used to dilute the solution
	iii/ Dilute the anhydrous suctium carbon
	ate to the volume of writer
	10 Standardize the concentration of
	anhydrous sodium carbonate in-
÷	order to make equivalent more
	from to the Hadrochlon acid.

Extract 14.1: A sample of an incorrect response to question 14.

In Extract 14.1, the candidate wrote procedures for the standardization of HCl acid; however, these did not address the question.

Further analysis shows that the candidates who scored average marks on this question failed to explain the points thoroughly and exhaustively. Besides, these candidates lacked sufficient knowledge about the topic of volumetric analysis.

Analysis revealed that 34.4 per cent of those who scored high marks correctly explained the concept of primary standard reagents. They also correctly explained the effectiveness of anhydrous sodium carbonate by pointing out four features of primary standard reagents. For instance, one of the candidates indicated that anhydrous sodium carbonate could standardize hydrochloric acid because *it does not absorb water from the atmosphere*

and it has high percentage purity. The candidate also correctly stated that anhydrous sodium carbonate *is thermally stable and therefore it cannot be affected by change of temperature.* These correct responses to this question indicates that the candidate had adequate knowledge of the features of standard reagent. Extract 14.2 shows a sample of correct responses to this question.

14	Effectiveness of anhydrous solvern andonate in
	standardizing hydrochloni and
	(plim carbonate in the Poincers Church-
	al solution which is made of sodium, Carbon and
	three oxygen molecules. This can be used to stand
	ardize the concentration of hydrochlone and due
	to the following s=
	· .
- 100	The concentration of Sodium carbonate
	does not change over time; This character fosters
	effectiveness of the substance towards the
	and which is hydrichton aud
8	The unhydrous sodium barbonate has
	less impurity substances, This tendency builts
	its application toward Handardizing the concentration
	ation of hydrochlonz and and reducing the
	level of impunities
	It is less volatile; This means can
51 z	be applied and its concentration can be retained
	over the long period of time. Its molecules does
	not evolves or evaporates easily.
	It is less harmful; This means the
	Saltum hydrox. Carbonate is Wealco base which is
	less comprise to the solid materials the even
	in skin of the body compared to other bases
	the Naott.
	It has higher Molecular weight:
	This molecules enables the exchanges and increase
	the reaction of the hydrochilons and because
	increase in concentration increase the rate of.
	the reaction.

14 Cont. Can Water. no neet. Pasil 0000 In lun hes NON 10 Can. 9 lied and Quic 120 P lonic nc d acid Oan Rain Q. Qw 01 es б are read water 0 DGG or 10 11 ence PY NC . ĩ sed ardize 0 econdan ٢ 0. 0 GR reage 4 nerall u б 00 50 Care luin reat is C 0 0 00

Extract 14.2: A sample of a correct response to question 14.

In Extract 14.2, the candidate correctly presented the effectiveness of the features of anhydrous sodium carbonate, as the primary standard reagent does not change over time and has less impurities in standardizing HCl acid.

2.2 732/2 Chemistry 2: Practical Paper

This was a practical paper, which was in two equivalent alternatives, namely **732/2A Chemistry 2A** and **732/2B Chemistry 2B**. The candidates were required to sit for one of the two alternative papers. Each alternative paper consisted of three questions, which carried 50 marks. Question 1 weighed 20 marks, whereas Questions 2 and 3 carried 15 marks each. The candidates were assessed in the topic of *Volumetric Analysis*, *Chemical Kinetics* and *Qualitative Analysis* for Question 1, 2 and 3, respectively. The candidates were required to answer all questions. The pass mark for Question 1 was 8.0 while for Questions 2 and 3 was 6.0 marks. Results show that the overall performance was good as most of the candidates (88.56%) scored good marks in all three questions. The analysis of each question in the practical papers is as follows:

2.2.1 Question 1: Volumetric Analysis

Chemistry 2A and 2B

The question tested the candidates' competences in the use of volumetric analysis to determine the unknown element on the given base by titration.

Question 1 of 732/2A Chemistry 2A asked as follows:

"Your tutor meets you and your friend in the laboratory arguing about the name and atomic mass of a certain metal present in the metal hydroxide. She then decides to give both of you an experiment to identify the metal present in the hydroxide. For the smooth running of the experiment, the tutor provides you with the following solutions:

- A_1 : A solution containing metal hydroxide (MOH) where M is unknown metal.
- B₂: A solution of 3.65 g of pure hydrochloric acid in 1.00 dm³ of aqueous solution.
 Methyl orange indicator.

Perform the experiment using the procedures given and answer the questions that follow.

Procedure

(i) Pipette 20 cm³ or 25 cm³ of solution A_1 into a conical flask. (ii) Add 2 to 3 drops of methyl orange indicator. (iii) Titrate solution B_2 against solution A_1 until a colour change is observed. (iv) Record up to four titre values.

Questions

- (a) (i) What is the volume of the pipette used?(ii) Present your results in a tabular form.
- (b) What is the colour change of the indicator?
- (c) Calculate the concentration of solution B_2 in mol dm⁻³.
- (d) Calculate the concentration of A_1 in mol dm^{-3} .
- (e) Calculate the atomic mass of metal M if the concentration of MOH is 5.6 g/dm³.
- (f) Identify the element **M** in MOH.

Question 1 of 732/2B Chemistry 2B asked as follows:

Sulphuric acid is hygroscopic and is an oxidizing agent; its concentration cannot be stable for a long time. You have decided to prove this fact by conducting an experiment using sulphuric acid solution labelled **SA** and primary standard solution made by dissolving 0.840 g of anhydrous sodium hydrogen carbonate in exactly 100 mL of solution. The primary standard solution was labelled **PS**. The titration indicator is methyl orange solution. Perform the experiment in the given procedures and answer the questions that follow.

Procedure

- (i) Pipette 20 cm³ or 25 cm³ of the solution **PS** and transfer it into the titrating flask.
- (ii) Add 2 to 3 drops of the indicator (MO) in the titrating flask.
- (iii)Transfer **SA** solution into the burette.
- (iv) Titrate **PS** using **SA** until the end point is reached.
- (v) Repeat step (i) to (iv) three more times.

Questions

- (a) (i) What is the volume of pipette used?
 - (ii) Draw and complete appropriate table of results.
- (b) (i) Calculate the average volume of SA used.
 (ii) Calculate the molarity of sodium hydrogen carbonate in solution PS.
- *(c) (i) Write the balanced chemical equation for the reaction that took place in this experiment.*
 - (ii) Calculate the molarity of the standardized sulphuric acid.

A total of 872 (100%) candidates attempted this question. The analysis of the candidates' performance on this question shows that 639 (73.3%) scored from 14 to 20 marks, indicating good marks. Additionally, 196 (22.5%) of the candidates scored from 8.0 to 13.5 marks, indicating average scores and 37 (4.2%) of the candidates scored from 0 to 7.5 marks, indicating weak marks. Figure 12 illustrates the candidates' performance on this question.

Figure 12: Candidates' Performance on Question 1

Generally, the majority of the candidates (95.8%) scored a pass mark or above, indicating good performance on this question.

The candidates who scored high marks on this question were 73.3 per cent. They had adequate knowledge about the standardization of solution using the titration method. In alternative practical A, these candidates correctly perform the experiment using standardized HCl acid with metal hydroxide in the formula MOH, and they used this information to calculate the atomic mass of metal **M** in the formula MOH. In alternative practical B, the candidates successfully standardized sulphuric acid using standard sodium hydrogen carbonate solution. Extracts 15.1 and 15.2 present samples of the correct responses to question 1 in the alternative practical, A and B, respectively.

1 Cont.	Concentration = 3.659
	1 dm ³
	=3.669/dm3
	Concentration of B2 = 3.65g/dm3.
	But,
	from, Malarity = Concentration
	Molar mass
	$= 3.659/dm^{3}$
	(1+35.5)9/mol
	= 3.669/dm
	36.5.9/mol
	$= 0.1 \text{Mol}/\text{dm}^3$
	. Concentration of B2 = 0.1 Moldm ²
	d) from eqn. MOH + HCL -> NICL + H2OL
	lumber of moles of Hel (na) = L.
	lumber of moles of MOH (1)b) = 1.
	Volume of fict $(Va) = 20 \text{ cm}^3$
	Volume of NOH $(V_v) = 20 \text{ cm}$
	Molasty of (ICL (111a) = 0.111
	Molarily of MORT(MD) = ?
	trom Main = 00 Al
	$\frac{119}{2} \sqrt{9} = \frac{116}{2} \sqrt{9}$
	Lia 11b
	Since more range = 1.1
	: Ma Va = Movo
	$M \sim M_{-N}$
	1116 = maya
	$= \frac{2 \nu (1/1) \lambda (2 \nu (1))}{2 \lambda m^3}$

1 Cont.
Mb = 0.1M
After Concentration of A1 = 0.1 Moldm ³
e) Atomic mass of metal $M = ?$
Given that
Concentration of Mott is 5.6g/dm3.
from,
Molarity = Concentration
Molar mass
Make Molar mass the Subject of the formula
Malia marge to Mary - Conceptation of Mart
Millionar mildes of MION = Concernation of Michi
Molaruly of MOH
= 5.69 and
5. a/mal :
Molar Male of Mat - 56 a mole
Thora 1100 1 1101 - 20 911101
MOH - GGalmal
M + 16 + 1 - 56
M+17 =56
M = F(r) - 17
M = 39
Molar mass of M in MOH = 39 almol
but
Molar mass of 39.9/mol is for Potassium Ple
ment
. The element Min MOH was Potassum (K)

Extract 15.1: A sample of a correct response to question 1 in Alternative Practical A.

In Extract 15.1, the candidate correctly recorded the experimental results in the table and gave the correct volumes in two decimal places as required.

Moreover, the candidate obtained the precise titre value falling within the expected range (i.e., ± 0.5 cm³). Additionally, the candidate correctly wrote

the chemical reaction between the given metal hydroxide and hydrochloric acid. Furthermore, the candidate performed all the necessary calculations to identify Potassium as the unknown metal in the formula MOH.

	Table of result.							
b)	Titrated		T	1				
_	volume used (an)	PILOF	1	2	3			
	Final volume	20.50	40.30	20.10	20.40			
	Initial reading on)	00.00	20.50	00.00	00.00			
	volume used	20.50	19.80	20.10	20.40			
	(cm3)			5				
Di	Average volume - VI + V2 + V8							
	3							
	= 19.80 + 20.10+ 20.40							
	2							
	= 20.1 cm ³							
(ii)	Molarity of	Nattco3						
	Mass of Nat	1003 -	0.8409					
	Notume of Natico, = 100mL = 0.1L							
	Concentration = Mass							
	Volume							
	= 0.8409							
	0.1 dm3							
	Concentration or Nagetion = 8:40 Hm							
	Rolt							
	Molaria = Concentration							
	Uslar Matri							

ont.					
Mobridy = 8.4g/dm3 = 0.1M					
84glmol					
Molanty of Sodium hydrogen carbonate					
= Oil mollam?					
a) 2 NOHOO + 11 CO NO CO + 24 0 +200					
(1) 112 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
(1) Motarity of Standardized Subphyric and					
Solution					
Molarity of Nation (mb) = 0.1M					
Volume of Nation (VD) = 20 cm ³					
Volume of H_SO4 (va) = 20.1 cm3					
Molarity of H2.504 (Ma) = ?					
Number of mole of Natt cos (nb) = 2					
Number of mole of Hosox (na) = 1					
From Mava = ng					
mb vb nb					
Ma = Mbvbng					
Nans					
Ma 2 <u>B(1 x 20 x 1</u>					
5)					
4012					
= 0.0498 ~ 0'05 M					

Extract 15.2: A sample of a correct response to question 1 in Alternative Practical B.

In Extract 15.2, the candidate correctly filled the table of results by observing the required two decimal places. The candidate correctly calculated the titre value which was within the acceptable range in comparison to the expected value (i.e., ± 0.5 cm³). Furthermore, the candidate correctly gave the balanced chemical equation between the base and acid and thus identified the colour changes during titration. Additionally, the candidate skillfully utilized stoichiometric ratios from the equation to calculate the molarity of standardized sulphuric acid.

However, a small number of candidates 37 (4.2%) scored low marks, from 0–7.5 in Question 1. Their responses reflected a lack fundamental knowledge and skills in conducting volumetric analysis. Some candidates gave titration volumes, which deviated beyond or below the accepted value which fell out of the standard range (i.e., \pm 0.5 cm³). For instance, one candidate incorrectly wrote a reaction equation, leading to the use of improper stoichiometric coefficients for the reacting species as shown in the following equation: $2HCl + 2MOH \rightarrow MCl_2 + 2H_2O$.

Thus, the candidate failed to recognize that the unknown metal M had a valence of +1, resulting in an incorrect formula MCl₂ instead of the correct formula MCl. Furthermore, some of the candidates incorrectly calculated the atomic mass of metal M in the compound MOH by using concentration instead of molecular mass. For instance, one of the candidate incorrectly used concentration ($5.6g/dm^3$) as the molar mass of the compound MOH to calculate the atomic mass of metal M in the following formula: $M + 16 + 1 = 5.6g/dm^3$.

Moreover, in alternative practical B, some candidates had limited knowledge of balancing chemical equation, calculating valence of metal or radical in a compound, providing correct products from chemical reaction and writing state symbols in chemical equations. For example, one candidate incorrectly wrote a chemical equation with the wrong product as follows:

 $2NaHCO_3 + 2H_2SO_4 \rightarrow Na_2SO_3 + 3H_2O + 2CO_2$ Instead of giving sodium sulphate (Na₂SO₄), the candidate gave sodium sulphite (Na₂SO₃), resulting in an unbalanced chemical equation. In addition, other candidates wrote unbalanced chemical equations due to the lack of skills in determining the valence of a radical or metal in a compound, as shown in the equation:

 $Na_{2}HCO_{3} + H_{2}SO_{4} \rightarrow Na_{2}SO_{4} + 2H_{2}O + CO_{3}$ Some candidates also confused the molecular mass of sodium hydrogen carbonate (NaHCO_{3}) with that of sodium carbonate when calculating the molarity NaHCO_{3}; for instance, one candidate wrote: $Molarity = \frac{Conc (g/dm^{3})}{Molar mass} = \frac{8.4 g/dm^{3}}{106 g/mol}$

This candidate used the molar mass of 106 g/mol of sodium carbonate instead of the correct molar mass of sodium hydrogen carbonate (84 g/mol). Extracts 15.3 and 15.4 further illustrate the incorrect responses to Question 1 in the alternative papers A and B, respectively.

1	a) The volume or	the once	the use	d was	20cm ³	
	1			-		-
	D Table of result	<u>tr.</u>				
	Experiment	PILOT	1	2	3	
	Final volume (cm²)	19.50	39:50	42.00	44.50	
	Initial volume (cm3)	00.00	19.50	20.00	22.00	1
	Volume used	19.50	20.00	22.00	22.50	
				-		
	Volume used ($(m^3) = 1$	19.50+	20.00+:	22.00+	22.50
				4	*	(12)
		2	84			3 ¹
		3	1			
	. Volume us	sed =	2) cm3			
	b) The colour change from xellow to pink.					
			· · · · ·	1 - 2		-
	2. Concentration of	Bz in	mol	dm ⁻³		
	soln					
	Prom					
	Concentration =	Mass				
		Volum	re			
		= 1-00dn	n3 3.6	59		
			<u>t·c</u>	wam		
		= 0.27	gldm3	*		
	- Concentration	q B2	= 0.0	027m	dm~	,
	D Concentration of	= A in	moto	Im -3		
	cdn.					
	Conantratio	m = Ma	u			4
		Vol	ume	*	P	
	but concentration	m=Mo	lanty	x mola	mas	r
			7			

Extract 15.3: A sample of an incorrect response to question 1 in Alternative Practical A.

In Extract 15.3, the candidate obtained incorrect data. Hence, the candidate calculated the wrong mean titre value which fell out of range. This indicates that the candidate did not know the fundamental principles of volumetric analysis. Furthermore, in parts (c), (d) and (e), one candidate used incorrect formulae to calculate molarity, leading to the wrong identification of metal **M** as Na.

1	(a). if the volume of pipette used is 25 che.				
	11/ TABLE OF RESULT:				
	Pilit 1 2 3				
	Final Volume Pitot 2605 2600 2601 2608				
	Initial volume 0.00 0.00 0.00 0.00				
	Nohune Used 26.05 26.00 26.01 26.03				
	(b). 1/ A varage volume = N1 + Va + V3				
	3				
	= 26.00 + 26.01 + 26.03				
	3				
	= 26.04				
	in the avarage volume of SA Used is 26.04 che.				
	ii/from: Welarity = concentration				
	Justar frass				
	but: concentration = wass/				
	- /volume				
	Concentration = 0.8409				
	0.1				
	Concentration = 0.84 9/df				
	su. polarity = (onc/ = 0.84 = 0.01 pd.				

Extract 15.4: A sample of an incorrect response to question 1 in Alternative Practical B.

In Extract 15.4, the candidate wrote the reaction equation with an incorrect molecular formula of the base in part (c). Moreover, in part (c), the candidate wrote an incorrect chemical equation, chemical symbols and units. Additionally, the candidate used standard units *mol* the instead of using the unit of *mol/dm³* for molarity.

2.2.2 Question 2: Chemical Kinetics and Energetic

Chemistry 2A and 2B

The question required the candidates to assess the effect of the rate of reaction by varying the concentration of sodium thiosulphate solution and to determine the effect of temperature on the rate of a chemical reaction.

Question 2 of 732/2A Chemistry 2A was as follows:

One of the factors that affect the rate of a chemical reaction is the concentration of the reactants. Therefore, in this experiment you are required to investigate the effect of concentration on the rate of reaction between sodium thiosulphate ($Na_2S_2O_3.5H_2O$) and hydrochloric acid (HCl). You are given the following materials:

AA: A solution containing $0.25 M Na_2S_2O_3.5H_2O$;

BB: A solution containing 0.5 M HCl;

Distilled water, stopwatch and a white paper with a cross "+".

Perform the experiment using the procedures given and answer the questions that follow.

Procedures

- (*i*) Put an empty beaker (50 cm³) on top of the mark "+" drawn on the given piece of paper. Make sure that the mark is clearly visible.
- (ii) Using a measuring cylinder, transfer 10 cm³ of AA into a beaker positioned on top of the mark "+".
- (iii) Using another measuring cylinder measure 5 cm^3 of **BB**.
- (iv) Hold the measuring cylinder containing 5 cm^3 of **BB** in one hand and hold the stop watch in another hand.
- (v) Simultaneously, pour 5 cm^3 of **BB** into the beaker positioned on top of the mark "+" and start the stop watch.
- (vi) Stir gently the contents in the beaker and record the time of disappearance of the mark "+".
- (vii) Repeat the procedure (i) to (vi) by using 8 cm³, 6 cm³, 4 cm³ instead of 10 cm³ of AA in procedure (ii) as tabulated below:
Table of Results

Experiment	Volume of Reactants (cm ³)			Time of (a)	Rate
	AA	Water	BB	I ime, t (s)	(s^{-1})
1	10	0	5		
2	8	2	5		
3	6	4	5		
4	4	6	5		

Questions

- (a) Complete the Table of Results.
- (b) Write the ionic equation representing the reaction between thiosulphate ion and an acid.
- (c) Plot a graph of rate (1/t) of reaction as a function of a volume of sodium thiosulphate.
- (d) With the aid of the graph obtained in (c), comment on the relationship between concentration of sodium thiosulphate and the rate of reaction.
- (e) Use the data in (a) to find the value of a rate constant, k, given that rate of chemical reaction is expressed by Rate = $k[S_2O_3^{2-}]^2[H^+]$.

Question 2 of 732/2B Chemistry 2B was as follows:

You are given a task to determine the effect of temperature on the rate of chemical reaction using sodium thiosulphate and nitric acid. During the experiment, you observe that sodium thiosulphate reacts with an acid to form white precipitates. However, the intensity of precipitation changes with change in temperature. You are asked to replicate the same experiment by using the following materials:

- **B1**: A solution of 0.05 M sodium thiosulphate;
- **B2**: A solution of 0.1 M nitric acid;

Stopwatch, thermometer and other relevant facilities.

Perform the experiment through the given procedures and then answer the questions that follow.

Procedures

- (i) Put an empty beaker (50 cm³) on top of the mark "+" drawn on the given piece of paper. Make sure that the mark is clearly visible.
- (ii) Pour about 200 cm³ of water into a 250 or 300 cm³ beaker. (Use this as your water bath).

- (iii) Measure 10 cm³ of **B1** and 10 cm³ of **B2**, and pour into separate test tubes.
- (iv) Put the two test tubes containing, **B1** and **B2**, into the water bath in (ii) and warm the contents to 50 °C.
- (v) Pour the hot solutions of **B1** and **B2** in the beaker in (i) and immediately start the stopwatch.
- *(vi)* Using a glass rod, stir the reaction mixture and record the time taken for the letter + to disappear completely.
- (vii) Repeat the procedure (iii) to (vi) by warming to temperatures, 60 °C, 70 °C and 80 °C instead of warming to 50 °C in procedure (iv).

Questions

(f) Complete the following table:

<i>I able of Kesults</i>

Temperature, T		$I/T(K^{1}) Time, t(s)$		Rate $\int_{-1}^{1} (s^{-1}) f$	$\log\left(\frac{1}{-}\right)$	
°C	K			t T	(t)	
50						
60						
70						
80						

- (g) From the table of results, give a conclusion with respect to the relationship between the temperature and the rate of reaction.
- (h) Plot a graph of log (1/t) as a function of 1/T.
- *(i)* Arrhenius equation can be presented by the

relation, $\log\left(\frac{1}{t}\right) = \frac{-E_a}{2.303R}\frac{1}{T} + \log A$, where E_a is the activation

energy and R is the gas constant = $8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$. With the aid of the graph obtained in (c), calculate the activation energy, E_{a} , in J mol⁻¹.

The candidates who attempted this question were 872 (100%). The analysis done indicates 189 candidates (21.7%) scored from 10.5 to 15 marks, indicating good performance; 490 (56.2%) scored from 6.0 to 10.0 marks, indicating average performance; and 193 (22.1%) scored from 0 to 5.5 marks, indicating weak performance. Figure 13 illustrates the candidates' performance on this question.

Figure 13: Candidates' Performance on Question 2

The analysis of the candidates' performance on this question shows that 679 (77.9%) scored from 6 to 15 marks, indicating good scores. Generally, the majority of the candidates (77.9%) had good performance on this question. These candidates had adequate knowledge about the rate of chemical reaction. They correctly determined the effect of the rate of reaction by varying the concentration of sodium thiosulphate solution in alternative practical 2A. Furthermore, they correctly determined the effect of the effect of temperature on the rate of the chemical reaction in alternative practical 2A. Surprise for the correct responses to Question 2 in alternative practical 2A and 2B, respectively.

(a) TABLE of RESULTS 2 EXPERIMENT Volume of the Readout (Um3) Time filed Rate 4 (Ser!) AA Hater BB . D 21 0 Б 0.04 2 8 0 5 R's 0'04 6 4 3 27 0'03 6 4 6 4 Ъ 36 0.02. (b) The balanced timic equation between sochum this supplies and to the chloric orid Naz Selz + 2HCl - +2Nacl + Soz + S. + HeD (ag) (ag) (ag) (b) 2Nt + 502 + 2H1+ 28 - 2C1 -- + 2Nt + 2C1 + 502 + 5 H20 Then the spectation ions was concelled The Duex11 Monic equation 'u 2#++520 (99) $\frac{1}{1000} + 2H^{+} \longrightarrow SO_{0} + S_{0} + H_{2}D_{1}$ d) tom the graph in 2C stained the relation on p believes the concolition of solium thiusuphate and Tate of Teaching is that At the convertetion decrease the rate also decrease and the or the rate of reaction lacross the volume is also increase there the ismustition of Sochuro throughton is directly proportional to the rate of reation ie Vol'te.

Extract 16.1: A sample of a correct response to question 2 of Alternative Practical A.

In Extract 16.1, the candidate correctly filled the experimental result in the table. In part (b), the candidate wrote the correct overall ionic equation for the reaction. Additionally, the candidate correctly plotted the graph as required per question in part (c), and commented on the relationship between the concentration of sodium thiosulphate and the rate of reaction in part (d). Lastly, the candidate correctly used the data in (a) to determine the value of the rate constant.

2 (a) Table of results Temperature, T Time + (5) +(1-1) Pare [(sec) log (+ °C L 2-832216 323 50 50 0.02 -159 132 J.000000-2 60 24 0.04 -1.39 2.915×10-3 343 18 0.05 -1.30 70 2.832210-2 0.1 -1. 80 352 10 (b) The rate of reaction decrease with the Increase of temperature. hence the high temperature increase the rate of the reaction Rate of -: ta= (c) refer to the graph paper (G1). d) trues R= 2.3142/mol/k . Form 97 = -Ea 1 + log A 2-703 RT m = -za2.203 but from the graph slope= Alt

2 Cont.	slope = -1.29 - (1.20)
	2.001-2.915
	slope = -1.022 \$ sec-1 k-1
0	
	then
	Ea = m x 2.802 X 8-314
	Ea =-1022 × 2.303 × 3:314
	: Ea = -19.58]mo-1.
	Etc

Extract 16.2: A sample of a correct response to question 2 of Alternative Practical B. In Extract 16.2, the candidate correctly recorded the required experimental data and plotted the graph of $\log \frac{1}{t}(\sec^{-1})$ against $\frac{1}{T}(K^{-1})$ correctly,

showing all points clearly and indicating an appropriate scale in part (b). Besides, the candidate correctly determined the activation energy of the reaction by using the Arrhenius equation. Lastly, the candidate clearly stated that the increase in temperature causes the decrease in the time for the reaction to be complete in part (c). This signifies the candidate knew that the rate of reaction is direct proportional to temperature.

In contrast, the candidates who scored low marks on this question had insufficient knowledge about rate of chemical reaction. Some of them recorded incorrect time for the completion of the reaction in the table of results. In part (c), some of the candidates plotted graphs with incorrect points due to inaccurate data collection and manipulation. Furthermore, the comments given by some candidates in part (d) on relationship of concentration to the rate of reaction were not correct; they confused time with the rate of reaction. For instance, one candidate responded that *when concentration decreases, the rate of reaction increases.* This comment is contrary to the literature. The correct response is that the rate of reaction decreases with the decrease in concentration instead of the rate constant that the question required. An example response was: $k = \left(\frac{0.04}{0.03}\right) = \left(\frac{8}{6}\right)^n$ instead of using the rate law for calculating the rate constant, which is $k = \frac{\text{rate}}{\left[S_2O_3^{2-}\right]^2 \left[H^+\right]^1}$.

 $\begin{bmatrix} S_2 O_3 \end{bmatrix} \begin{bmatrix} \Pi \end{bmatrix}$ the rate constant using correct formulae led them to scoring low marks on

Question 2 of alternative practical A.

Further analysis revealed that the candidates with low scores in alternative practical B indicates a lack graphing techniques. Although some candidates correctly completed the table in part (a), they failed to draw accurate conclusions of the relationship between temperature and the rate of reaction in part (b). For example, one candidate wrongly responded that *increase in temperature results to decrease the rate of chemical reaction*. Another candidate wrote: *The rate of reaction is inversely proportional to temperature that is increase in temperature decrease in rate of reaction*. Such incorrect responses were attributed to the candidates' insufficient knowledge of the subject matter. They failed to differentiate time from the

rate of reaction. Additionally, in part (a) of the alternative B, some candidates did not include the title of the graph or labels of axis. Moreover, their choice of scale was poor. These candidates failed to understand that each coordinate axis of a graph should be labeled with the word or symbol for the variable plotted, and the graph should have a clear title indicating which variables are represented. Proper scales should be chosen to ensure that the data are easy to plot and read. These shortcomings affected the calculation of activation energy. Their low performance on this question indicated that candidates did not know the effect of temperature on the rate of reaction. Extracts 16.3 and 16.4 presents samples of the incorrect responses to Question 2 in alternative practicals A and B, respectively.

2 D Telt of Rendri
Experiment Valume of Read
$$h(w)$$
 Sime to Rak
At Walk & BB (5⁻¹)
1 10 0 5 30 0.025
3 6 4 5 50 0.02
4 4 6 5 60 0.016

Norse of the second sec

Extract 16.3: A sample of an incorrect response to question 2 in Alternative Practical A.

In Extract 16.3, the candidate wrote the correct molecular equation but failed to write the ionic chemical equation in part (b). The candidate incorrectly used the volume of water and thiosulphate in the experiment to calculate the rate constant instead of the concentration of hydrochloric acid $[H^+]$ and thiosulphate $[S_2O_3^{2-}]$.

2	as Table	of resu	(f				
	Tempeta	Lute T	VT (K")	Time, t(s)	Rate (1/2(5))]	(0g (-2)	
	°C	ĸ					
	50	323	3.09×103	64	0.0156	-1.806	
	60	333	3.00×100	40	0.025	-1.602	
	70	343	2-91×10-3	39	0.031	-1.508	
	80	353	2.83110	23	0.035	-1:447	
	55 ts the	femper.	ature in	crease H	<u>u tate of</u>	teaction	
	dected	ase and	when .	the fem	perature	decrease	
	the 7	ate of	Teaction	Incre	ase.		
		.1					
		_					
	ds. To a	alucate.	activation	energy			
	Give	0					
	R = 8	8-314Jr	not-1 k-1				
	2	.303					
	Ea :	*(mxa	.303R)				
	In = (-3.70 × 103 × 2.303 × 8.413)						
		Ŧa =	-71.68				
		192					
			Activation	Energy	= 71.62	Jmol-1	
1							

Extract 16.4: A sample of an incorrect response to question 2 in Alternative Practical B.

In Extract 16.4, the candidate obtained correct data in part (a). However, the conclusion of the relationship between temperature and the rate of reaction was incorrect. Contrary to the established literature, the candidate wrongly stated that temperature and the rate of reaction are inversely related. Due to this incorrect conclusion, the candidate failed to plot the graph, significantly altering the nature of the graph. As a result, the incorrect slope was derived from the graph, leading to an erroneous calculation of the activation energy.

2.2.3 Question 3: Qualitative Analysis Chemistry 2A and 2B

The questions assessed the candidates' competence in carrying out practical activities and making informed observations and inferences of salts under investigation. The sample salts given were copper (II) sulphate ($CuSO_4$) in alternative 2A and iron (II) sulphate ($FeSO_4$) in alternative 2B.

In 732/2A Chemistry 2A, the question was as follows:

Sample K is a simple salt in the laboratory, which contains one cation and one anion. Perform a systematic qualitative analysis experiment to identify the cation and the anion present in the sample based on the following tests and answer the questions that follow.

- (i) Appearance of sample **K**
- (ii) Action of heat on sample **K** in a test tube
- *(iii)* Action of dilute sulphuric or hydrochloric acid on the solid sample
- *(iv) Action of concentrated sulphuric acid on the solid sample*
- (v) Flame test
- (vi) Solubility of the sample
- (vii) Confirmatory test for the anion
- (viii) Confirmatory test for the cation

Questions

- (a) Prepare a relevant Table showing the qualitative analysis results.
- (b) What are the cation and anion present in the unknown sample?
- (c) Write the reaction equation to indicate what took place in test (vii).

In alternative B, the question was as follows:

John was complaining of stomach pains after drinking some tea. After diagnosis by the medical doctor, it was noted that the tea might have been contaminated with sample L.

Perform the experiment to identify the cation and anion present in the tea sample based on the following tests and answer the questions that follow: (i) Appearance of sample L

(ii) Action of heat on sample L in a test tube

(iii) Action of dilute sulphuric or hydrochloric acid to solid sample

(iv) Action of concentrated sulphuric acid on solid sample

(v) Flame test

(vi) Solubility of the sample

(vii) Confirmatory test for the anion

(viii) Confirmatory test for the cation

Questions

(a) Prepare a relevant Table showing the qualitative analysis results.

(b) Identify the ions in sample L.

(c) What is the name of sample L?

(d) Write the reaction equation to indicate what took place in test (viii).

(e) Write the reaction equation to indicate what took place in test (iv).

All 872 candidates (100%) attempted the question. Among them, 625 (71.7%) scored from 10.5 to 15.0 marks; 177 (20.3%) scored from 6 to 10.5 marks; and 70 (8%) scored from 0 to 5.5 marks, as shown in Figure 14.

Figure 14: Candidates' Performance on Question 3

Figure 14 indicate that the candidates 'performance on this question was good, with 802 (92%) scoring from 6 to 15 marks.

Additionally, the majority of the candidates (92%) scored a pass mark or above. The candidates who had good performance (71.7%) mastered the topic of qualitative analysis and had proficiency in performing experiments in both alternative practicals A and B. Their responses show that those who scored high marks (10.5 to 15.0) in alternative practical A, presented clearly by giving correct observations and inferences in a standard table of results. These candidates correctly identified the cation which was Cu^{2+} and

the anion which was $SO_4^{2^-}$. Besides, most of these candidates wrote correct reaction equations to indicate what took place in the test in parts (vi) and (viii). Moreover, in alternative practical B, the candidates correctly identified the cation which was Fe^{2+} and the anion which was $SO_4^{2^-}$. Furthermore, most of the candidates wrote the correct observations and inferences in most parts of the questions. Generally, the candidates were skilled in using qualitative analysis procedures to perform the experiment. Extracts 17.1 and 17.2 show samples of the correct responses to question 3 in alternative practicals A and B, respectively.

3	Experiment	Observation	Infering.
٢	1) Appearance of sample &		A.
	is Colour	Blue	at my be precent
	is Texture	Crystalline form	No; sa; ct my be
	/	0	present.
	2) Action of heat on	colouders gas with pringent	
	cample K in start	mell evolves, which hims	500° may be present
	Inte	moist blue litmus paper red	, , ,
	3 Action of dilute		
	Hel on a solial sample	No gas evolves	Suf NG, c1-
	k		may be present
	a Action of concentrated		
	the say on the solidande	No.gas evolves	SOu may be present.
	of Flame test		
	~	Bluish - Green flame	Cot may be present.
	6) Colubility of the Anolo	Soluble forming blue	Cur may be present
		subution.	
	75 Confirmatory test		
	for the anion	white precipitate indulle	Sag conformed
	- Asmall volume of -	mobilite HCl.	
	angle solution into the		
	sest-tube, then Bach		
	was added followed		
	by ditute Hel filleral		
	by dilute HAVE		
	8. Confirmatory test		
	for the capit		
	- A small volume of the		
	maple solution in the		

3 Cont.	test the , then ammonia	Pale Shire precipitate while	
	solution added drup-wite	in excess of aqueous	Cu2+ confirmed
	unki in excess	ammonia forming a	4
		deep blue solution	
(b)	The cation is Cut	and anion is SO4	- present in
	the unknown sample.		,
0	The reaction equator	" which took place in	tet (vii) is
	USO4 FB	a Ch - Cuch	- Baso,
	(4)	69 69	, ⁴ 09

Extract 17.1: A sample of a correct response to question 3 in Alternative Practical A.

In Extract 17.1, the candidate properly followed the procedures given and gave correct observations, inferences, a balanced chemical equation. Finally, the candidate identified one cation (Cu^{2+}) and one anion (SO_4^{2-}) correctly.

3	A)			
	ND	PROCEDURE	ORSETVATION	INFERENCE
	1	Appenance of		Fet N2t (r at
		sample L	Green.	cu2+ may
		(1) colour	·	to prosent
		(i) Deliguescence.	Absorbs water from	No3 cl
		19C	the atmosphere to	Soz- may
			tom solution	po procent.
	2.	The aching of heat	Reddish brown.	Fe24, Fe34
		on sample L ina	residue	May be.
		but tubo		Procent.
	3.	The action of di	No gas evolves.	502- c1-
		luts hodrochlonic		Nog may
		and to solid sa		be present
		mplo. L		
	4	The action of	Blue crystal lum	Joz - of
	,	concentrated sulphy	White	hrdraled
		the and on a		cuit may.
		Sample L		be present.
	5	Flamo test of the	Vellow sparks	Fe2+, fo3+
		Samplo L		was proso
				nt.
	6	The saluber 15	Soluble in cold water	502- WRU
		of the sample		photon ex
				Cept those
				of B24 5r24
				Calt and Plet
	7	The confirmation	White procipitate N	So2- Was
		Lost For the anion	formed insoluble in	Photon and
			dilute ttel	conFimod.
	T			

3 Cont.	PD .	PROGEDURG	Marking 200	INTERENSE
	8	The confirmation	Darle blue pro	
2		lost For the	apitale is form	Fer was
		Cation of the	- ec	confirmed
		Sample L		-
		1		
	()	5) The lon	1 1n Sample	L 14
		F_27	and sol-	
		15		
	('	C) The rame	of sample L	- 1
		Iron Ti	sylphate (Fesa)
			7	
		2000 - XX	9 W	
	(9) Required (2 linete the ec	aughon that
		toole pla	to in last (Viii)	1
		Fosoz .	+ Potassium hos	anocorato
			Eo29 Confirmed	
	1.5		4	
				27.07
	(e) Required	to write the c	equation that
		horste	Place in Lost	(Vin X. VV)
		fero, t	Hso -p Soe	antimood
20		7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 	

Extract 17.2: A sample of a correct response to question 3 in Alternative Practical B.

In Extract 17.2, the candidate provided correct observations and inferences from the tests performed. In addition, the candidate followed the procedures given and identified the presence of one cation Fe^{2} , and one anion SO_4^{2-} correctly. The candidate also wrote the correct molecular formulae (FeSO₄) for sample L.

In contrast, the candidates who scored low marks from (0 to 5.5) in alternative practical A, failed to write correctly in some stages of observations and inferences. For instance, one candidate responded to stage (i) on the appearance of sample K as *white in colour* instead of blue crystals. In stage (iii) and (iv), some candidates incorrectly inferred that the presence of $CO_3^{2^-}$ and $HCO_3^{2^-}$ theoretically showed that no gas evolved when dilute acid reacted with sulphates. These responses stemmed from incorrect observations and indicate a poor understanding of experimental procedures. Furthermore, some candidates demonstrated poor skills in testing the solubility of the salt. For instance, one candidate responded that *sample 'K' was insoluble in cold water* while theoretically all sulphates salts are soluble except barium sulphates. In part (c), where the candidate were required to write the equation for the reaction in procedure (vii) some candidate provided incorrect and incomplete equations, indicating a lack of knowledge about the chemical processes taking place.

Similarly, the candidates who scored low marks from (0 to 5.5) in alternative practical B, struggled with performing tests and recording appropriately observations and inferences from the experiment. This led to an incorrect confirmatory test for iron (II) sulphate (sample L). For instance, one candidate responded: Sample L was insoluble in cold water. Another candidate reported that the solubility of the sample L does not dissolve in hot or cold water. The response was incorrectly stated because theoretically Iron II sulphate is soluble in water. The candidate lacked basic knowledge and competence in conducting salt analysis. Furthermore, in parts (d) and (e) the candidates were required to write the equation for the reactions in procedures (iv) and (viii), respectively. Some of them provided incorrect equations, indicating their lack of understanding of the chemical reaction involved. Other candidates failed to follow the instructions and tests given. This signifies that most of candidates lacked basic knowledge of the procedures for using a qualitative analysis sheet in analysing a salt sample. Extracts 17.3 and 17.4 show samples of the incorrect responses to

3	SIN	EYPERIMENT	OBJEBUASION	INFERENCE
a	(1)	Appearance of	Pale or light	fer may be
		solid sample K	green observee	pucont
	(i)	Action of haden	colountess gas protive	1 632- 400-
		a solid somple	which turns line was	may 6 percont
		ĸ	milky and wellim	u i i i i i i i i i i i i i i i i i i i
			apper from blue to wat	
	(ii)	Action q di lub	Efferneronary 9	10,2- Hog-
		supplient or hydro	eclouitess gas evolus	may be present.
		chlonic acro on	which turns time	· · ·
		the lite amount	water milky	
		9 poliol rample	and wet litmus	
		K in a fait	paper nom blue	
		tubo polkwed	1 4 40/	
		by 2 drop of Hel		
		0		
	N	Action of concent.	Efferverceno yaco	02 - Heg-
		ratel sh I phuine	lourless gas evolves.	May be parent.
		aurch on the little ;	to gas toms time	· ·
		maint q polid 1	water milky and	
		rample K inte 1	vet litmu paper from	
		test tube pollewood	blue to coop	
		H2 SOLO		
				1 Nd
	V	Flame test	Yellow (brange)	te", fest may be
			sparks "	pulont.
			, ,	

Question 3 in Alternative Practicals A and B, respectively.

3 Cont.	114	ENDERIMENTS	ORIERVATION	INFERENCE
	VI	Chiphile a the	A Luble pomin	
	<i></i>	somale & Audin	noh alon	Fe ²¹ m. h account
		Iupupu Ardanas	par garri	1- may to pour
<u> </u>	1	tobal comple K	JUIOL / 1011	
		10 to hat to 16 and		
		relland told dutilled		
		performed can annua		
	2	aller		
	·		uff a set	0.25
	V//	confirmatory all	anio puerpilao	(Og 2 confirmate
	-	porthe anion	before warming	
			the content c	
	e Alexandre			
	VIII	confirmatory tort	Leep blue	Fo2t
		for the ration	pre l' pitate	1º confirmade
		V		V
	8			
			- 1	
6		Otion is 7	e ²⁷	
0 8.J		Anion is	Co2-	
		¥	0	^
		the The	uaction pquas	his .
С		Per + Con	2D	Fe can
			_	

Extract 17.3: A sample of an incorrect response to question 3 in Alternative Practical A.

In Extract 17.3, most of the observations and inferences provided by the candidate are incorrect. For instance, in part (a) (ii), (iii), and (iv), the candidate wrote the effervescences of a colourless gas evolved which turns lime water milky on action of dilute and concentrated sulphuric acid on the solid sample **K**, instead of the expected observations "no gas evolved" which does not infer the presence of SO_4^{2-} ions. These discrepancies signify a lack of understanding of the test performed in the experiment.

3	\$6	Experiment	Observation	Inference.
\cap				
٩	Ü	Appearance of	•	
		cample L		
		@ Colour	Pail green	-Transition eleme-
				nts may be
				present.
		& Texture	Crystalline form	No. So? cl,
			-	C2042, Croz. NO2
				and cr. & neary
				be present.
		US Delignerence	Doesn't absorbs	<u> </u>
			water from the	-NB, ctand
			atnosphere	Soz are absent.
			9	
	is	Action of heat.	- Coloules Vapour	CH2COO may
		on sample L.	with a smell of	be present.
		About 059 of	vereger eisnieg.	
		sample L was	0	
		taken into day	-	
		test tube and war		
		heated.		
	ins	Action of dilute	- Efferre scence of	Cost. Heoz may
		suppluric or hydro.	a colowless gas	be present.
		dorie acid+.		L
		Gright amount		\$
		of sample L way		
		taken followed		
		by addition of		
		dilute . Hch,		

3 Cont. Sm	Experiment	Observation	Aference.
N	Action of concentra	colourless vapour	CH2Coo-may
	ted H2-Soy on sample.	with vinegar mell	be present.
	about as g of a	evolves.	v
	sample I was taken		
	into test dry test		
	tube with the addition		
	of conc. Hason		
k	flame test.		
	& nichrome wine	Blue grey	Pl2t prairie
	was sized in .	0	be desent.
	concentrated HcL		9 .
	and heated in		
	non- teminous flame		
Vi	Solubility of ample	Insoluble in	1022- May
	L. 3,-,-	hat or cal I water	be oresent
	A small amount		p
	of sample I was		
	taken in a dry		
	test tube followed		
	by addition of disti-		
	Hed water.		
Vij	Continuetory to at for		
	the anion,		
	about 1 Cm3 of the		
	solution was trans		
	fered in a feet to be		

3 Cont.	with addition of	White precipitate	:[
	Back . followed	Schefle in delute	CO2- confirmed.
	Vi by dilute Hel.	HCL is formed	
	Viii) confirmation for	bark blue prespitate	
	lations.	is formed!	Fest confirmed.
	few drops of		- , · ·
	patassum pero		
	Lynde was		
	added in to the		
	colution of the		
	sample		
6	e A:		
8	Callins is fer		
	Anions is los		
(0)	So al lin for	201	
6	sample L 13 190	(12)3	
(dy	fer (cort + K. for	(CN) - FO IC	O) · V GI
~		CODO PIER(C	3)3 + M4(M):
nei	for KB1 + H0	-+2fo (0, +	lo to.
6			<u> </u>

Extract 17.4: A sample of an incorrect response to question 3 in the Alternative Practical B.

In Extract 17.4, the candidate gave incorrect responses almost to all parts of the question. For example, in part (a) (iii) and (iv) the candidate incorrectly wrote the gas evolved during the action of dil. Hydrochloric acid and concentrated sulphuric acid on solid sample L. In part (a) (v), the blue grey observed in the flame test does not infer the presence of Fe^{2+} ion. The same applies to parts (a) (vii) and (viii); the confirmatory test does not infer the presence Fe^{2+} and SO_4^{2-} respectively.

3.0 ANALYSIS OF CANDIDATES' PERFORMANCE ON EACH TOPIC

3.1 Analysis of Candidates' Performance on Each Topic in Paper 1

A total of 10 topics were examined in paper 1. The topics covered included; Analysis of O-level Chemistry Curriculum Materials; Planning and Preparation for Teaching; Environmental Chemistry; Assessment in Chemistry; Volumetric analysis; Chemical Kinetics, Energetics and Equilibrium; Transition Metal Chemistry; Electrochemistry; General Chemistry, and Organic Chemistry.

Good performance was observed on the topics of *Environmental Chemistry* (99.3%), *Planning and Preparation for Teaching* (96.3%) and *Volumetric Analysis* (82.6%). The candidates attained average performance on the topics of *Analysis of O-level Chemistry Curriculum Materials* (69.3%), *Organic Chemistry* (50.1%) and *Transition Metal Chemistry* (45.2%). In contrast, the candidates had poor performance in the topics of *Assessment Procedures in Chemistry* (5.8%), *Electrochemistry* (9.4%), *General Chemistry* (24.8%), and *Chemical Kinetics, Energetics and Equilibrium* (39.9%). A summary of the candidates' performance on each topic in paper 1 has been presented in Appendix I.

Additionally, when comparing the performance in 2023 with that in 2022, there was an excellent improvement in the topic of *Planning and Preparation for Teaching* from (67.9%) in 2022 to (96.3%) in 2023. Other topics improved at an average performance level; *Organic Chemistry* (6.4%) in 2022 to (50.1%) in 2023 and *Transition Metal Elements* from (28.5%) in 2022 to (45.2%) in 2023. However, there was a decline in performance on the topics of *Assessment Procedures in Chemistry* from (87%) in 2022 to (5.8%) in 2023, *Analysis of O-level Chemistry Curriculum Materials* declined from (98.6%) in 2022 to (69.3%) in 2023, *Environmental Chemistry* declined from 23.8 percent in 2022 to 9.4 percent in 2023. Appendix III illustrate the comparison of the candidates' performance per topic for paper 1 in 2022 and 2023.

3.2 Analysis of Candidates' Performance on Each Topic in Paper 2

In each of the three alternatives of Chemistry Paper 2, three topics were assessed. The topics were *Volumetric Analysis*; *Chemical Kinetics, Energetics and Equilibrium*; and *Qualitative Analysis*. The candidates had good performance on all topics of *Volumetric Analysis* (95.8%), *Qualitative Analysis* (92%) and *Chemical Kinetics, Energetics and Equilibrium* (77.9%). A summary of the candidates' performance on each topic in paper 2 has been shown in Appendix II.

When comparing the performance in 2023 with that in 2022, there was a great improvement in *Volumetric Analysis*, from 74.7 per cent in 2022 to 95.8 per cent in 2023; *Qualitative Analysis* from 66.9 per cent in 2022 to 92 per cent in 2023; and *Chemical Kinetics, Energetics and Equilibrium*, from 49.1 per cent in 2022 to 77.9 per cent in 2023. A comparison of the candidates' performance per topic for paper 2 in 2022 and 2023 has been shown in Appendix IV.

4.0 CONCLUSION

The performance in the Chemistry subject on the Diploma in Secondary Education Examination (DSEE) was good since 99.4 per cent of candidates passed. Analysis shows that the candidates' good performance was attributed by their abilities to identify the needs of the questions, sufficient knowledge of the subject matter. However, the Assessment Procedures in Chemistry topic had very weak performance compared to other topics. This implies that many candidates did not develop the expected competences during the course.

5.0 **RECOMMENDATIONS**

This report makes the following recommendations in light of the findings from the analysis of the candidates' responses to the items in the 2023 DSEE in the Chemistry subject:

(a) Tutors should insist on participatory strategies, such as plenary discussions, role-plays, individual portfolio and critical reflections in the teaching and learning of the *Assessment in Chemistry* topic. This will enable students to apply the competences developed in responding to the questions asked in future examinations.

- (b) In teaching the topic of *General Chemistry*, tutors should use models in displaying the atomic structure and scientific experiments behind the discovery of atomic models.
- (c) Tutors should insist more on practical approaches/strategies such as demonstration, plenary discussions, individual portfolio and experiments in teaching and learning the topic of *Chemical Kinetics*, *Energetics and Equilibrium*. This will enable students to develop competences in the topic and apply them in real life situations.
- (d) The topic of *Electrochemistry* should be taught by using practicals related to identified problems, activities oriented on different issues raised in the topic and critical reflections on various activities to build students competences in the topic.

Summary of Candidates' Performance on Each Topic in Paper 1 (Theory Paper)

S/N	Topic	Question Number	Performa nce on Each Question (%)	Performan ce on Each Topic (%)	Remarks
1	Planning and Preparation for Teaching	9	96.3	96.3	Good
2	Environmental Chemistry	11 13	99.3 80.3	89.8	Good
3	Analysis of O-level Chemistry Curriculum Materials	8	69.3	69.3	Average
4	Volumetric Analysis	4 14	82.6 34.4	58.5	Average
5	Organic Chemistry	7	68.5 31.7	50.1	Average
6	Transition Metal Chemistry	6	45.2	45.2	Average
7	Chemical Kinetics, Energetics and Equilibrium	2 3	45.4 12.7	39.9	Weak
8	General Chemistry	1	24.8	24.8	Weak
9	Electrochemistry	5	9.4	9.4	Weak
10	Assessment in Chemistry	10	5.8	5.8	Weak

S/N	Topic	Question Number	Performan ce on Each Question (%)	Performa nce on Each Topic (%)	Remarks
1	Volumetric Analysis	3	95.8	95.8	Good
2	Qualitative Analysis	1	92	92	Good
3	ChemicalKinetics,EnergeticsandEquilibrium	2	77.9	77.9	Good

Summary of Candidates' Performance on Each Topic in Paper 2 (Actual Practical)

APPENDIX III

Comparison of the Candidates' Performance per Topic in paper 1 2022 and 2023

		2022			2023		
S/N	Topic	of Of Question	Performa nce on each Question (%)	Remarks	of Ouestions	Performa nce on each Ouestion	Remarks
1	Analysis of O'level Chemistry Curriculum Materials	1	98.6	Good	1	69.3	Average
2	Environmental Chemistry	1	95.3	Good	2	89.8	Good
3	Assessment in Chemistry	1	87.0	Good	1	5.8	Weak
4	Planning and Preparation for Teaching	1	67.9	Average	1	96.3	Good
5	Volumetric Analysis	2	63.0	Average	2	58.5	Average
6	Chemical Kinetics, Energetics and Equilibrium	2	50.3	Average	2	39.9	Average
7	Transition Metal Chemistry	1	28.5	Weak	1	45.2	Average
8	Electrochemistry	1	23.8	Weak	1	9.4	Weak
9	General Chemistry	1	10.2	Weak	1	24.8	Weak
10	Fundamentals of Teaching and Learning Chemistry	1	8.9	Weak			
11	Organic Chemistry	2	6.4	Weak	1	50.1	Average

APPENDIX IV

Comparison of the Candidates' Performance per Topic in Paper 2 DSEE 2022 and 2023

		2022			2023		
S/N	Topic	Number of Question	Performa nce on each Question (%)	Remarks	Number of Questions	Performa nce on each Question	Remarks
1	Volumetric						
	Analysis	1	66.9	Average	1	95.8	Good
2	Qualitative						Good
	Analysis	3	79.7	Good	3	92	Clou
3	Chemical Kinetics,						
	Energetics and Equilibrium	2	49.1	Average	2	77.9	Good

