THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT FOR THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2019

131 PHYSICS

THE NATIONAL EXAMINATION COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT FOR THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2019

131 PHYSICS

The National Examinations Council of Tanzania, 2019
l rights reserved.

Published by:

P.O.Box 2624

Dar es Salaam, Tanzania.

The National Examinations Council of Tanzania

Table of Contents

FORE	EWORD	v
1.0	INTRODUCTION	1
2.0	ANALYSIS OF THE CANDIDATES' PERFORMANCE ON EACH QUESTION	2
2.1	131/1 PHYSICS 1	2
2.1.1	Question 1: Measurement	2
2.1.2	Question 2: Newton's Laws of Motion	8
2.1.3	Question 3: Projectile Motion	14
2.1.4	Question 4: Simple Harmonic Motion	18
2.1.5	Question 5: Circular Motion	24
2.1.6	Question 6: Gravitation	29
2.1.7	Question 7: Thermometers and Thermal Conduction	34
2.1.8	Question 8: Heat (Thermal Conduction and Thermal Radiation)	37
2.1.9	Question 9: Current Electricity	41
2.1.10	Question 10: Current Electricity	46
2.1.1	1 Question 11: Electronics	51
2.1.12	2 Question 12: Electronics	55
2.1.13	3 Question 13: Telecommunication	60
2.1.14	4 Question 14: Environmental Physics	63
2.2	131/2 PHYSICS 2	66
2.2.1	Question 1: Fluid Dynamics	66
2.2.2	Question 2: Vibrations and Waves	73
2.2.3	Question 3: Vibrations and Waves	81
2.2.4	Question 4: Properties of Matter	87
2.2.5	Question 5: Electrostatics	93
2.2.6	Question 6: Electrostatics	101
2.2.7	Question 7: Atomic Physics	107
2.2.8	Question 8: Atomic Physics	115
2.2.9	Question 9: Electromagnetism	122

3.0	ANALYSIS OF CANDIDATES' PERFORMANCE PER TOPIC	128
3.1	Candidates' Performance per Topic	128
3.2	Comparison of Candidates' Performance on each Topic and in terms of Grades between 2018 and 2019	
4.0	CONCLUSION AND RECOMMENDATIONS	131
4.1	Conclusion	131
4.2	Recommendations	132
Apper	ndices	133
Appe	ndix A	133
Apper	ndix B	134
Appe	ndix C	135

FOREWORD

The candidates' item response analysis report for the Advanced Certificate of Secondary Education Examination (ACSEE) 2019 on the Physics subject provides a summative evaluation of the two years of secondary education in Tanzania. The candidates' responses to the examination questions reveal what the education system was able or unable to offer to the candidates in their two years of secondary education.

The analysis presented in this report intends to contribute towards understanding possible reasons behind the candidates' performance on the Physics subject. It highlights the factors that made the candidates to score either high or low. The challenges faced by the candidates to perform averagely are also clearly stipulated. Such factors include misconception of ideas, failure to understand the demands of the questions, lack of mathematical skills hence failure to analyse the data in a good manner, and inadequate knowledge of the concepts related to the subject matter.

This feedback will enable educational stakeholders, teachers, parents, school managers and students to identify proper measures to improve candidates' performance in future examinations administered by the Council.

Finally, the Council would like to thank the examiners, co-ordinators, reviewers, IT specialists and data analysts who prepared and analysed the data used in this report.

Dr. Charles E. Msonde **EXECUTIVE SECRETARY**

1.0 INTRODUCTION

This report is based on the analysis of candidates' responses to the Advanced Certificate of Secondary Education Examination (ACSEE) 2019 questions for 131 Physics papers 1 and 2. The papers were organized in order to test the candidates' competencies and skills in different areas as stipulated in the 2010 Physics syllabus and adhered to in the 2011 examination format.

Physics paper 1 was comprised of fourteen (14) questions which were categorized into three sections, namely A, B and C. Section A was comprised of six (6) questions and section B and C had four questions each. The candidates were required to answer a total of ten (10) questions by choosing four (4) questions from section A and three (3) questions from each sections in B and C.

Physics paper 2 had three sections namely A, B and C. Each section comprised of three (3) questions making a total of nine (9) questions. Candidates were required to answer five (5) questions by choosing at least one (1) question from each section. Generally, all questions in both papers aimed at testing the candidates' ability to comprehend, interpret and analyse the data based on the demand of the questions.

A total of 18,906 candidates sat for the examination, of which 16,768 (89.13%) passed the examination and 2,138 (10.87%) failed. In 2018, the number of candidates who sat for Physics examination was 19,547 of which 86.48 percent passed the examination and 13.52 percent failed. This implies that the candidates' performance in this year has increased by 2.65 percent. The following table shows the grade performance in Physics in 2019 as compared to 2018.

GRADE YEAR	A	В	C	D	E	S	F
2019	50	683	2,771	5,496	5,920	1,848	2,044
2018	70	821	2,658	5,159	5,872	2,225	2,628

The table shows that, although the general performance in 2019 is better than in 2018, the candidates who scored grade A were more in 2018 than in 2019.

This report, therefore, intends to provide a detailed analysis based on the candidates' performance in each item. A brief note on what the candidates were required to do and the reasons for their performance are provided. Different extracts representing samples of the candidates' responses have been inserted to show clearly what the candidates did. Graphs and charts are also used to summarize the candidates' performance in a particular question.

Nevertheless, the percentage of performance in each question is categorized into three levels of performance based on the scores. The good, average and weak performance categories are in the ranges of 60 - 100, 35 - 59 and 0 - 34 respectively. For easy presentation in the charts, green, yellow and red colours are used to present these categories respectively. The report also indicates the candidates' performance in each topic and in grades as compared to the year 2018 (see appendices A, B and C). Finally, it provides a conclusion and gives recommendations that may help to improve candidates' performance in future examinations.

2.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE ON EACH OUESTION

2.1 131/1 PHYSICS 1

This paper had short answer questions constructed from six topics as described in the analysis part. Each question carried 10 marks. The candidates' performance was considered as weak, average and good if the score ranges from 0 to 3, 3.5 to 5.5 and 6 to 10 marks respectively. The pass score for each question was taken from 3.5 and above. Therefore, the analysis of the candidates' performance on each question is as follows:

2.1.1 Question 1: Measurement

This question had parts (a) and (b). Part (a) required the candidates to (i) identify two basic rules of dimensional analysis and (ii) use the method of dimensions to derive the formula which relates the frequency of vibration, n, tension, T, length, l and mass per unit length m given that, the frequency of vibration of a stretched string is a function of its tension, the length and mass per unit length. Part (b) required them to (i) state four causes of systematic errors in an experiment and (ii) estimate the numerical

value of drag force $D = \frac{1}{2}C\rho AV^2$ and its associated error if the measurements of the quantities C, A, ρ and V were recorded as (10 ± 0.00) unit less, (5 ± 0.2) cm² (15 ± 0.15) g/cm³ and (3 ± 0.5) cm/sec² respectively.

A total of 18,498 candidates (97.8%) attempted this question. Analysis of the performance of the candidates revealed that 48.6 percent of them scored good marks, ranging from 6 to 10; 37.5 percent scored from 3.5 to 5.5; while 13.9 percent scored from 0 to 3 marks. These data are presented in Figure 1.

Figure 1: The candidates' performance on question 1

The candidates with good performance (6 - 10 marks) provided the correct responses to most parts of the question. They mentioned correctly the rules of dimensional analysis and applied it well to obtain the formula $n = \frac{k}{l} \sqrt{\frac{F}{m}}$ which relates the frequency of vibration n, tension T, length l and mass per unit length m of the stretched string. Furthermore, they were aware of the sources of systematic errors as they wrote the required responses which included incorrect design or calibration of the instrument, lack of accuracy of the formula being used, incorrect interpretation of the scale of the instrument and limitations of the method used for measurement. Apart from that, they had adequate understanding of the symbols used to represent errors as they were able to identify the measured value and its associated error in each measurement hence determined the value of drag force

 $D = (3.375 \pm 1.230) \times 10^{-2}$ N correctly. Extract 1.1 shows one of the correct responses noted in this question from one of the candidates.

1000	The bosic rules of dimensional analysis arej-
140,01	(i) We can only add or substract the physical
	quantities of some kind (le of some unit)
	quantities or same kind (it or same unit)
	only. for example, we cannot add velocity and
	mass.
-	(11) The physical relation is dimensionally correct
	if and only if the dimensions of all terms in
	both sides of physical relation are the same.
ciii	5dn ,
Cii)	
	n a Farb me,
	Then,
	[KAKA44]s.
-	[n] = [F] = [L] b [m] e
	[7-] = [MLT-2]a[L]b[ML-1]c
	herce,
	[Woro 1-1] = [W]a+c[F]a+p-c[1]-50
	by comparison;
	-20=-1
	q= ½;
	dso,
	9+0=0
	1/2 + C = 0
	c= 1/2
	Moreover,
	a-16-c=0
	1/27/10/00
	1/2 +6 + 1/2 = 0
	b=-1

1 (a)xii)	unan Substitutions:
3 (4)	upon substituting; $n = K \sum_{i=1}^{N} L^{-1} m^{-1/2}$
	h
	The second secon
	L m where k is do a less
	n= k F L m where k is dimensionless constant
	constant
ti th	The eauses of systematic errors are;
	(i) The incorrect dumity thill the calibration of the
	instrument,
	(ii) The lack of accurancy of formula used,
	(iii) The used of poor measure method of measurement
	in the incorrect design of the measuring
	instrument.
cii)	soln.
	Given
	D= /2 CJAV2
	herce,
	$D = \frac{1}{5} \times 10 \times 15 \times 5 \times 3^2$
	2
	= 3375 N
	: The drag force's true value = 3375 #gom/s2
	Moreover,
	introducing "In" both sides:
	In 0 = In(1) + Inc + Inf+ InA + 2Inv
	upon differentiating:
	$\frac{\Delta p - o + \Delta c}{D} + \frac{\Delta f}{C} + \frac{\Delta A}{A} + \frac{2\Delta V}{V}$
	b c P A

1.6500	hense,
	$\frac{\Delta D}{D} = \frac{\Delta C}{C} + \frac{\Delta \Gamma}{A} + \frac{\Delta A}{A} + \frac{2\Delta V}{V}$
	$= \frac{\left(\frac{0}{10}\right)}{10} + \left(\frac{0.15}{15}\right) + \left(\frac{0.2}{5}\right) + \left(\frac{2 \times 0.5}{3}\right)$
	=0+ 0.01+ 0.04+ 0.33
	= 0.38
	hence,
	$\Delta b = 3375 \times 0.38$
	= 1293.75
	The associated error is 1293.75 gcm/s2
	hence,
	The value of drag force is
	D= (3375 ± 1293.75) 9cm/s2
	-

Extract 1.1 is a correct response given by a candidate.

Extract 1.1 indicates how the candidate had adequate knowledge of dimensions and errors hence managed to describe the method of dimensional analysis and derive the relationship between physical quantities.

In contrast, the candidates who had weak performance lacked knowledge of basic rules, dimensional analysis, and errors in measurement. Most of them failed to retrieve the sources of systematic errors. As a result, they mentioned sources of other types of errors like random and gross errors. Extract 1.2 is a sample of the responses given by the candidates with poor performance on this question.

1.	a) if Basic rules of dimensional analysis
	- The three basic quantities are used which
	are mass, length and time only.
	- Does not work on for constants and whole
	numbers.
	if Given;
	n = frequency
	F= tension
	L= length
	m = mass per unit length

, , , , , , , , , , , , , , , , , , , ,
n∝F1m
but, F=[MLT-2]
n= // = [T-1]
m= [M]
m = [M L-1]
n=kflm
n=Kx[MLT2][M][MLF]
but 0 = 4x4° 17-17 = [M°1°7-17
a=2; b=0 and c=1/2
but n = px [T-1] = [M° L° T-1] a=2; b=2 and c=1/2 n=1x4 F 2 m° L/2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
n2/Fm/
1. b) if Causes of Systematic emors in an experiment; - Air resistance - Nature of the material - Taking wrong observations of the readings
- Air resistance
- Nature of the material
- Taking wrong observations of the
readings
$W = \frac{1}{2}C\rho AV^2$
$\dot{V} = \frac{1}{2}C\rho AV^2$
$C = (10 \pm 0.00)$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^2$
$C = (10 \pm 0.00)$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^2$ $V = (15 \pm 0.15) \text{ sl cm}^3$ $V = (3 \pm 0.5) \text{ cm sec}^2$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^2$ $P = (15 \pm 0.15) \text{ s}/\text{cm}^3$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^2$ $V = (15 \pm 0.15) \text{ sl cm}^3$ $V = (3 \pm 0.5) \text{ cm sec}^2$ $D = 1/2 C P A V^2$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^{2}$ $V = (15 \pm 0.15) \text{ glcm}^{3}$ $V = (3 \pm 0.5) \text{ cm/sec}^{2}$ $D = 1/2 \text{ C} AV^{2}$ $C = DV, S = DP, A = DV, V = 2 \times DV,$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^2$ $V = (15 \pm 0.15) \text{ sl cm}^3$ $V = (3 \pm 0.5) \text{ cm sec}^2$ $D = 1/2 C P A V^2$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^{2}$ $V = (15 \pm 0.15) \text{ glcm}^{3}$ $V = (3 \pm 0.5) \text{ cm} \text{sec}^{2}$ $D = \frac{1}{2} (29 \text{ AV}^{2})$ $C = \frac{1}{2} (42 + \frac{1}{2} + \frac{1}$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^{2}$ $P = (15 \pm 0.15) \text{ s} / \text{cm}^{3}$ $V = (3 \pm 0.5) \text{ cm} / \text{sec}^{2}$ $D = \frac{1}{2} (29 \text{ AV}^{2})$ $D = \frac{1}{2} (49 + 29 + 24 + 24 + 24 + 24 + 24 + 24 + $
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^{2}$ $P = (15 \pm 0.15) \text{ glcm}^{3}$ $V = (3 \pm 0.5) \text{ cm} \text{sec}^{2}$ $D = \frac{1}{2} (29 \text{ AV}^{2})$ $D = \frac{1}{2} \left(\frac{\Delta y}{y} + \frac{\Delta y}{y} + \frac{\Delta \lambda y}{y} \right)$ $D = \frac{1}{2} \left(\frac{\alpha \cdot 00}{10} + \frac{\alpha \cdot 2}{5} + \frac{\alpha \cdot 15}{15} + (2 \times \frac{0.5}{3}) \right)$ $= \frac{1}{2} \left(\frac{\alpha \cdot 00}{10} + \frac{\alpha \cdot 2}{5} + \frac{\alpha \cdot 15}{15} + (2 \times \frac{0.5}{3}) \right)$ $= \frac{1}{2} \left(\frac{\alpha \cdot 00}{10} + \frac{\alpha \cdot 2}{5} + \frac{\alpha \cdot 15}{15} + (2 \times \frac{0.5}{3}) \right)$
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^{2}$ $V = (15 \pm 0.15) \text{ glcm}^{3}$ $V = (3 \pm 0.5) \text{ cm} \text{sec}^{2}$ $D = \frac{1}{2} (29 \text{ AV}^{2})$ $D = \frac{1}{2} (49 + 49 + 49 + 49 + 49 + 49 + 49 + 49 $
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^{2}$ $V = (15 \pm 0.15) \text{ g/cm}^{3}$ $V = (3 \pm 0.5) \text{ cm/sec}^{2}$ $D = \frac{1}{2} \left(\frac{1}{2} + $
$C = (10 \pm 0.00)$ $A = (5 \pm 0.2) \text{ cm}^{2}$ $V = (15 \pm 0.15) \text{ glcm}^{3}$ $V = (3 \pm 0.5) \text{ cm} \text{sec}^{2}$ $D = \frac{1}{2} (29 \text{ AV}^{2})$ $D = \frac{1}{2} (49 + 49 + 49 + 49 + 49 + 49 + 49 + 49 $

Extract 1.2, is a sample of poor responses given by the candidate.

In extract 1.2 the candidate demonstrated poor performance due to lack of knowledge of dimension, errors as well as differentiation.

2.1.2 Question 2: Newton's Laws of Motion

This question contained two parts: (a) and (b). In part (a), the candidates were required to calculate (i) the minimum rate of fuel consumption that enables the rocket to rise from the ground when a rocket of mass 20 kg has 180 kg of fuel and 1.6 km/sec exhaust velocity of the fuel and (ii) the ultimate vertical speed gained by the rocket when the rate of fuel consumption is 2 kg/sec. In part (b), they were required to (i) determine the least number of pieces required to stop the bullet if a rifle bullet loses $\frac{1}{20}$ of its velocity when passing through them and (ii) calculate the average force the water exert on the man of 100 kg who jumps into a swimming pool from a height of 5 m if it takes 0.4 seconds for the water in the pool to reduce its velocity to zero.

Data analysis reveals that 25.7 percent of the candidates attempted this question. Among them, 72.1 percent scored marks ranging from 0 to 3; 19.4 percent scored from 3.5 to 5.5 marks; and 8.5 percent scored from 6 to 10 marks. These scores imply that the candidates' performance in this question was weak because only 27.9 percent of the candidates scored from 3.5 to 10 marks as summarized in Figure 2.

Figure 2: The candidates' performance on question 2

Figure 2 shows that, few candidates (25.7%) attempted this question, of which 26.4 percent scored zero. One of the factors noted to affect performance was the lack of adequate knowledge about rocket propulsion.

Most of the candidates failed to realize that the rate of rocket fuel consumption is minimum when the upward acceleration of the rocket is zero. Since the up thrust overcomes the weight of the rocket, then the rocket will move with uniform velocity. This concept could give them an expression $v\frac{dm}{dt} = mg$ from which the rate of fuel consumption $\frac{dm}{dt}$ would have been calculated. Similarly, in part (a) (ii), most of them failed to recall the formula to determine the ultimate vertical velocity of the rocket which is given by $V = v\log_e \frac{m_o}{m} - gt$. Another factor was the failure to understand that, in order to obtain the correct answer in part (b) they were required to be aware of the applications of Newton's laws of motion. Extract 2.1 shows responses of one of the candidates who demonstrated poor performance on this question.

2@	Data given:
	Man (M) = 201a.
	Mass of Fuel (M) = 180kg.
	Total man (Mo) = (20 +180) /cg = 200/cg.
	velocity (V) = 1.6km/sec = 1600m/s
1/3	Data given: Mass (M) = 201ag. Mass of fred (M) = 180kg. Total mass (Ho) = (20 +180)kg = 200kg. Velezati (V) = 1.6km/sec = 1600m/s Paq: Minimum Rote of fred (dm/dt) = ?
,	L (NW)
	V = 24 + ct, $u = 0$. V = ct, $c = g$. t = V/g = 1600/9.
	V=at , $a=g$.
	$t=V_q=1600/$
	7 8 29.8
	= 163.265 sec dm/ ₁ = 180lcg 160.265 sec
	$dm/_{\parallel} = 180lcg$
	16). 265 se c
	= 1.102/kg/sec.
	= the minimum are affect consumption 11 110.01 19/160.
1	Required: Speed (V) =?. Rete of Rul consumption (dm/dt) = 21cg/sec- from: F = V dm/dt = 1600 × 1.102 (- 1,76 4N.
- y	Robert Policy (dm/dt) = 2/ca/100-
	form; E = V dWIF.
	= 1600 ×1.102(
	1,76 4N.
	Equip = V.
	7 dm/2t
	V = 1764N
	2/10/100
	V = 1764 N 2/19/100 = 882 m/100. 5-The speed gained by the redoct is 882 m/100.
	5- The speed gained by the nated is 882 m/sec.

26 Data given:
if $Man(w) = Topica$.
if Mass (m) = tooleg. height (h) = 5m.
time $(t) = 0.45ec$
Required : force (F) =). For 2000 for mation. S=ut that?
For 2000 for notion.
S=ut that?
$H = V_2 qt^2$
V=V+ct
V = gt
$=9'8\times0'4$
= $92mJ$.
But
F = MV
t
= 100 X3.92
0.4
= 980 N·
5. The average force exerted on the water is 980N.

Extract 2.1 is a sample of poor response given by the candidate.

In extract 2.1 the candidate used inappropriate procedures and formulae in the presented calculations as he/she failed to determine reaction forces and describe the application of Newton's laws of motion in daily life.

In spite of the weak performance by the majority of the candidates who attempted this question, few candidates managed to provide the correct responses to some parts of the question. For instance, in part (b) (i) which was skipped by most candidates, some of them deduced that, when the bullet penetrates through the first piece of thickness S, its velocity v_o which

decreases by $\frac{1}{20}$ becomes $v = v_o - \frac{1}{20}v_o = \frac{19}{20}v_o$. Then from Newton's

third equation of motion $\left(\frac{19}{20}v_0\right)^2 = v_o^2 + 2aS$ giving the value of thickness $S = -\frac{39}{800a}v_0^2$. Again, if n is the number of pieces required to stop the bullet after it has passed the first piece, $o^2 = \left(\frac{19}{20}v_o\right)^2 + 2a(nS)$ giving the value of $n = -\frac{361}{800aS}v_0^2$. Replacing S in the latter equation gives n = 9.25. Thus, the total number of the pieces including the first piece is n+1=9.25+1=10.25. Since pieces exist as whole numbers, $n\approx 11$ pieces. Extract 2.2 presents the response by one of the candidates who responded correctly in this question.

2.	as ·						
	(i) let man is noctat be m.						
	extrust be Vr.						
	So',						
	F - mg := ma ·						
	for rising up.						
	F > mg						
	where F = Vr dm/dt where dm/dt is the						
	rate of consumption of firet.						
	۷۰:						
	Vidmont = mg.						
	dml - mg						
	dm/dx = mg.						
	Vr = 1600 ms-1. 9 = 9.8 ms-5.						
	m = 160+20 = 200 109.						
	dm/ct = 200 tg x 9.8 m 2.						
	1600 ms1.						
	qu/q+ = 1.552 kg1-1.						
	(11) Rom: V = U + V1 n Mg/n - 0+						
	Then: 4=0. by considered value of gravi						
	V = ulhmate speed.						
	1 = 100 m21.						
	Mo = 200kg.						
	M = aoka						
	9=9.8.						
	t = Mass 4 fuel.						
	rate a consumption						

2. (a) (ii) .				
t= 160 kg.				
URRELESS 2 kg. 1.				
t = 901.				
. 02				
$V = 1600 \ln \frac{200}{20} - 9.8(90)$				
20				
N= 3803. 14 m21.				
is Whimthe speed U 2802. 14mit				
(b) (1) let Then number be X.				
Then: $V^2 = U^2 - 2a.$				
V = 19.4 , 42				
20				
$50: [19.]^2 = u^2 - 2a$				
70				
2as = 19 12 ul - ul.				
(10)				
$200 = 39 \cdot 4^2 \cdot (1)$				
400				
Then let in number return				
The 19/10 to zero.				
$V^{2} = u_{0}^{2} - 2a_{1}n$				
$u^{20} = v \cdot v = 0$				
20				

2.	$(b)_{(1)}$, $0^2 = (19 \text{ y})^2 - 2010$.
	2a) n = (194) 2.
	$\frac{200 \text{ n}}{400}$
	but Ras = 3942. Row 9911).
	39 W. n = 361 W.
	n2 9
	total number $x = 0.1$
	0. 10 pieces are required.
	(ii) lot volvaty acquired by man how 5m fall be V.
	$9 = 9 \cdot 4 \cdot 4 \cdot 5 \cdot 5$
	V = V 2×9. Y × 5
	$V = 9.9 \text{ m}^{-1}$. Let The decellation deceration be a. So: $V_1^2 = V^2 - 291$.
	$V_1 = 0$ $V = 9.9$

2.	(bz:11) from.
	V = 4 + at .
	4v'.
	$V_1 = V + \alpha + \cdot$
	a= V1-V.
	+
	a = (0 - 9.9.) my-2.
	0.4
	a = - 24.75 mg-2 ((-) show most the
	body 11 decerelations.
	net tra
	F = ma.
	£= 100 × 54.7e. = 547Eh.
	is Force aring on Jody 1)
	24754.

Extract 2.2 shows a sample of a good answer provided by a candidate.

In extract 2.2 the candidate understood the demand of the question as he/she competently applied Newton's laws of motion to solve the problems.

2.1.3 Question 3: Projectile Motion

This question was divided into two parts: (a) and (b). In part (a), the candidates were required to (i) justify the statement that the projectile motion is a two dimensional motion and (ii) calculate the horizontal distance covered after the half time of flight when a rocket was launched with a velocity of 50 m/s from the surface of the moon (acceleration due to gravity 1.67 m/s²) at an angle of 40° to the horizontal. In part (b), they were required to (i) show that the angle of projection θ^o for a projectile launched from the origin is given by $\theta^0 = \tan^{-1}\left(\frac{4h_m}{R}\right)$ where R stand for horizontal range and h_m is the maximum vertical height and (ii) determine

the angle of projection for which the horizontal range of a projectile is $4\sqrt{3}$ times its maximum height.

About eighty nine (88.8) percent of the candidates opted for this question. Among them, 12.1 percent scored from 0 to 3; 21.2 percent scored from 3.5 to 5.5 marks; and 66.7 percent scored from 6 to 10 marks. Therefore, the general performance on this question was good because 87.9 percent of the candidates scored from 3.5 to 10 marks. This implies that most of them had good understanding of the concept of *projectile motion* hence they adhered correctly to the demand of each part of the question. Extract 3.1 presents one of the good responses to this question.

3.00	
ús	the fact that projectile motion is the two
	dimensional motion can be justified by considering
	the equation of trajectory of the body undergoing
	projectile motion, thatis;
	$y = x Tan \theta - \frac{g}{2u^2 \cos^2 \theta} \times \frac{g}{2u^2 \cos^2 \theta}$
-	which indicates that at every instant of
	time a body undergos veloth vertical and
	horizontal displacement.
3.60 (ii)	s-ln
	from,
	x= ucoset —in
	and,
	1. T= 2usin0
	Im , hence,
	$\frac{t=T=u\sin\theta}{2} = \frac{1}{2}$
	herce,
	x = ucoso x usino
	J.
	$=$ $u^2 \sin \theta \cos \theta$
	9m
	$\therefore \times = (50)^2 \times \sin(40^\circ) \times \cos(40^\circ)$
	1.67
	= 737·132m
	: horizontal distance covered is 737-132m

رمی رن	soln.
	From,
	$hm = (11\sin\theta)^2$
	$hm = \frac{(u\sin\theta)^2}{2g}$
	R= 1.242 sin8 cos8 (11)
	7-1-
	Take eqn (i) ; eqn (i);
	$\frac{1}{100}$ hm = $\frac{1}{100}$
	hm = Tanb
	R 4
3 (bacis	hence
	Tand = 4hm
	R
	and,
	0= tony 4hm
	θ = ton (4hm) shence shown.
(ii)	sdo.
	From derived Formula above,
	7and = 4hm R
	R
	Given,
	R= 4√3 hm
	hence,
	Tand = 4hm
	4 √3 hm
	Tand = 1
	$Tan\theta = 1$ $\sqrt{3}$
	$\theta = \pi c n^{-1} \left(\frac{1}{\sqrt{3}} \right)$
	= 30°
	" The Angle of projection is 30"

Extract 3.1: A sample of good response given by a candidate.

In extract 3.1 the candidate correctly and systematically presented the answers for each part. This indicates that he/she had a good understanding of the concepts and formulae of projectile motion.

On the other hand, candidates who scored low marks in this question presented incorrect responses to most parts of the question. For example, in part (a) (i), most of them failed to give the reason behind the given statement whereas in (a) (ii), they failed to retrieve proper formulae for horizontal range and maximum height. Moreover, some candidates used the acceleration of the earth due to gravity instead of that of the moon in calculating the horizontal distance covered by the rocket launched in the moon. This indicates that they did not read carefully the instructions and the constants given on the front page of the examination paper, where the acceleration of free fall on the moon was given. In part (b), most of them failed to derive the formula $\theta^0 = \tan^{-1}\left(\frac{4h_m}{R}\right)$ as applied in projectile

motion indicating that they lacked content knowledge about the formula of range and maximum height of a projectile. Extract 3.2 is a sample of poor responses to this question.

-2	Dipprojectile is a true dimensional motions
	- Because when a projectite is thrown from a
	Crestain angle It is acted upon the force of
	gravity. so two dimentional notion of the budy and
	of the fine of growity will occur that why is
	called two dimensional motions
	ij Data.
	V. = 50mls
	Q= 40°
	a = 2
	after half time of flight
	B= notive a
-3	J
	5 V#.
	T= 211 V #9
	from U'sun's = H
	H=43120
	3
	$H = 50^{2} \sin^{2} 40 = 87 - 245 m$
	9
	H= 87.25m - maximum Hight
	,
7	T= 2TT / 1/3
5	· · · · · · ·
	<u> </u>

7	T= 2TI \ 87-25
7.	
	P = 42 (12 0
	9
	*
	P = 90 1 105.4
	4-8
	R=105-4-87-25
	but Re
	". The range = 105.4 - maximum height
	Range = 105-4-87-25
3	3
	Runge = 18.15 m
	7
-	- the horizontal distance covered = 18-15 m.
	bu) I how that
_	Q = tqn-1 (4hm)
	from Q= H= U2 sin2 a
	Sed H = 4hm

Extract 3.2 indicates inappropriate responses provided by a candidate.

In extract 3.2 the candidate used incorrect formulae and procedures in calculating the horizontal distance and maximum height hence received wrong responses.

2.1.4 Question 4: Simple Harmonic Motion

This question was comprised of parts (a) and (b). Part (a) required the candidates to: (i) provide two typical examples of simple harmonic motion (S.H.M) and (ii) explain why velocity and acceleration of a body executing

S.H.M are out of phase. Part (b) required them to (i) calculate the time taken by a particle to move a distance of 12.5 cm on either side from the mean position given that the period of a particle executing simple harmonic motion (S.H.M) is 3 seconds and its amplitude is 25 cm and (ii) find the minimum weight of a person as recorded by a machine of the platform given that the person weighing 50 kg stood on a platform which oscillates with a frequency of 2 Hz and amplitude of 0.05 m.

The number of candidates who opted for this question was 14927, equivalent to 79.0 percent. Their performance was as follows: 45 percent scored from 0 to 3 (including 5.9% who scored 0 marks); 32.1 percent scored from 3.5 to 5.5 marks; while 22.9 percent scored from 6 to 10 marks. The candidates' performance on this question is presented in Figure 3.

Figure 3: The candidates' performance on question 4

The candidates who performed well in this question managed to state correctly the two typical examples of simple harmonic motion, which include oscillations of a loaded spring, oscillations of a liquid in a U- tube and oscillations of a floating cylinder and motion of a body dropped in a tunnel along earth's diameter. Also they managed to give the fact that velocity and acceleration of a body executing S.H.M are out of phase because in S.H.M acceleration is always directed towards the centre. Hence, it is maximum at the extremes where the velocity is zero and minimum at the equilibrium where the velocity is maximum. Moreover, most of them attempted well in part (b) (i) but missed some required steps in solving part (b) (ii) as they failed to identify that for a body of mass M, placed on a platform which executes vertical S.H.M at angular speed W, its weight W is given by $W = Mg \pm Aw^2$ where W0 stands for acceleration due

to gravity. Hence, they could not deduce the formula for minimum weight given that $W_m = Mg - Aw^2$. Extract 4.1 presents the sample of a response from one of the candidates who managed to provide required answers to each part of this question.

fa) i) Two typical example of Suplo harmon (8. H. m)	
· motion of simple pendulum.	
· Oscillation of fluid in a Whole appare	Jr.
- 12(C) - 12(2) (1) - 2(1) - 2(1)	2107
ii) Tho so are re locate and a eccloration are out of the	or6
Since at different point in SHOM motion	
buce at different point instead with posses different value That is	
at maximum displanment	
acceleration is marginal	
acceleration is marginal	
- at Equilibrium (mean parihon	
a code ration in zero	
veloaty to maximum	
Die to those they are out of phase,	
B 1) GINGE T = 3 22 0000	
W2 BT = 2x3.14	
77 3	
w = 2,00 red 100.	
anolihor as of con	
displacement y = 18.5cm	
Equation of displacement of Imple	
parmine!	
ns a finh.	
1 2 0 Ev (51) F)	
(,3,1)	
12150 250 800 (31xt	
, -	
812 (54 Xf) = 15.20	
$\frac{3}{810(80 \times f)} = \frac{38cm}{515cm}$	

b)	ii)
	\ .1.
	21/ 5 8/2 (0.2)
	1
	2 1 2 1/p
	76
	2+ = 6
	7 6
	12/= 3
	T2 T2
	t= 0125 sec
	t = 015 gre = 5t = 5km 5250.20
	Time to margon either tide = 2+=2x0:25=0:58ec
	Time to may on either ride = 21=2x0:25=0:58ec
	7 = 0,5 lec.
	11) mall me 50kg
	frequency = 2H2
	amplitude A= orosm,
	· Required minimum meight recorded byma chines
	but weight of man
	W= mg
	= 50 kg x 918m/12
	W = 490N
	bue too oscillation, not force
	tack Ma
	but a = acceleratur
	but a = acceleration! a = with
	a = wex

45) ii) az (2117)24
= 472424
= (+ x(3,1,10) x 2, x0,02) m/3; = + 115,454
9 = 1.89 m/s ²
Then net force
fat = vn q
= 364.24 = (4.84 220) U
= 394,5N
``,
Minimum weight & W- Fret
= 490h 3945N
= 95.50
". Minimum weight recorded by
mochus = deien

Extract 4.1 is a sample of the correct response given by a candidate.

In extract 4.1 the candidate managed to describe Simple Harmonic Motion and applied the required formulae and procedures to deduce the period, acceleration, weight and net force.

Most of those who scored low marks (0 - 3) could not describe properly the typical examples of S.H.M and give the reason behind the acceleration and velocity of a body executing S.H.M being out of phase. They were also not aware of the appropriate formula for calculating the required quantities. For example in part (b) (i), they did not use the formula $y = A\sin\frac{2\pi t}{T}$ to calculate the time taken by the particle to move a given distance in either side from the mean position. Instead, they used other formulae related to the circular motion. Extract 4.2 shows a poor response from a candidate who supplied incorrect answers to the question.

04 a.ji) -o Pendellum bob
- water in a test tube.
Date in a regiment
iding simple harmonic motion is affected by Gravitation hence velocity interrupt out
Iding simple harmonic motion is affected by
Grantation hence velocity interrupt out
Livin.
b(i) soln
T=35
A = 25 cm = 0.25M
d= 12.5 cm = 0.12/M.
+=?
trom T - 1/
From $T = \frac{1}{1 + 1}$ so $t = \frac{1}{1 + 1} = 0.33 s$.
but also from
W = 251
$\overline{v} = \overline{u}$
(1)
50 211/ = 1/ ₊
24 W - V7
ν=ν ₊ ν=αν = 0.125
1 that = Orty
257 = 1/
/ \
2517f = Y.
$2\pi d = \lambda$
V=0.05.
out V - sal
at = Ad/ = 0.125/0.05 = 2-545
4.1 - 1./0 /0.03

of D Data	
Mars = 50kg	
F=21h	
A=0.01M.	
f=1	
Gent 7 = 21	
Force =	
Frequency = ST F	,
H	
F= $(2\pi \sqrt{F})^2$	Y
<u>u</u>	
F2 = 45T2 F	
F2xx = 4512	
M JU	
1 21	
F = V452	
D/ =1000	
but 1 = Mas/constt = 0.05	
F= V4×5127	
1000	
F=0198 N.	

Extract 4.2: A sample of poor responses provided by a candidate.

In extract 4.2 the candidate partially described the typical examples of S.H.M, provided an incorrect reason to part (a) (ii), and applied incorrect formula in doing calculations.

2.1.5 Question 5: Circular Motion

This question consisted of two parts, titled (a) and (b). Part (a), required the candidates to (i) explain the aspect in which circular motion differs from linear motion and (ii) give reason why there must be a force acting on a particle moving with uniform speed in a circular path. In part (b) (i), they were required to calculate the average velocity of a particle moving in a semi-circular path AB of radius 6 m with a constant speed of 12 m/s. Part

(b) (ii) required the candidates to determine the magnitude of acceleration of a stone tied to the end of a string of 80 cm long then whirled in a horizontal circle with a constant speed, making 25 revolutions in 14 seconds.

A total of 9533 (50.4%) candidates attempted this question. Among them, 35.1 percent of them scored from 0 to 3; 48.4 percent scored from 3.5 to 5.5; and 16.5 percent scored from 6 to 10. These scores indicate that the performance on this question was good since 64.9 percent of the candidates scored from 3.5 to 10. Figure 4 illustrates the given information.

Figure 4: The candidates' performance on question 5

The analysis of the candidates' responses in this question revealed that most of them had a good understanding of the concept of *circular motion*. In part (a) (i), they stated correctly that circular motion differs from linear motion in the sense that in circular motion the direction changes continuously with time, unlike in linear motion. In part (a) (ii), they recognized that circular motion is facilitated by centripetal force due to the existence of centripetal acceleration which is always directed towards the centre of motion. Also, most of them attempted item (b) (ii) well but failed to do so in item (b) (i) due to various reasons, including inability to deduce that average velocity in some context is given by $v = \frac{Displacement}{Total\ time}$. Therefore, some of them calculated the average velocity as a mean of the velocities in Arc AB through the AB diameter. This was not correct since the direction of the velocity along Arc AB varies. However, some candidates detected the logic behind. Therefore, they managed to solve this item correctly as presented in Extract 5.1.

3(a) (ii) There must be a force acting
because if there will be no Force
acting the body will leave the
Circular path and move in a straight
line.
#
(i) Circular motion differ from linear
velocity in Greater notion is alway
Velocity in Gruler motion is alway
ys changing interms of mainly direction while in linear mation velocity changes in terms of magnit
direction while in linear motion
velocity changes in terms of magnit
ude.
5(b)(i) Data given
Speed (V) = 12 mLs. (Zadius (r) = 6 m.
(Cadrius (r) = 614,
For H. Co.
From the figure
Speed(V) = distance AB
1
but distance AB = 1 (Circumference)
2 Circumterence
$AB = 1.2\pi r.$
a
distance = TTr.
t = f(r) = 1.57 see.
√
5 B1 (i) Average velocity,
V= 2 1 1 1 1 1 1
V= 2 x radius
t'
V= 2x6 +
1.57 V=7.64mls.
V= 7.64mls.
Average velocity = 7.64 mls.
1.712 Je venogiy = 7.041113;

Extract 5.1: A sample of good response provided by a candidate.

Extract 5.1 indicates how the candidate responded correctly to each item by describing the application of circular motion and applying the correct formulae and procedures in determining the time, average velocity and acceleration with respect to circular motion.

However, most of the 35.1 percent of the candidates who scored low marks (0 - 3) lacked knowledge about the concept of *circular motion* as they failed to distinguish it from linear motion and to give reasons behind the given task in part (a) (ii). Most of them also failed to draw the free force diagram to resolve the vertical and horizontal components of force acting on a body whirled in a horizontal circle. Extract 5.2 shows an example response by a candidate who gave incorrect answers to each of the question items.

For a Circular mater safe to the mater but last
500 Circular motion refers to the motion that lends to move with respect to the direction of the
Crawley not.
But
lucar motion relies to the motion that fends
to move with the respect to the linear path.
'
P Curada motion has both liner and radial valualty
W17126
linear motion has enly linear Velouty
2 7 1 1 1 1 1 1
In there must be a force acting at a particle moving with Uniform Speed to a bodonce the restoring force
with Uniform Speed so a progrance the restoring force
to not make the object to fly langentally here to
I due to the presence of both tangential and rated
Euchea in.
50 1 Redrawing the chagrain
Irrls
A Gm M Gm
At Constant Speed = Acceleration & Zero
At Constant Speed = Acceleration is Zeno
F= mg - mv2
m9 = mv2
,
9= v2
,
$9xy = V^2$ $\sqrt{9xy} = V$

Extract 5.2: A sample of poor response provided by a candidate.

Extract 5.2 indicates how the candidate failed to deduce the concepts of circular motion as he/she applied incorrect formulae leading to incorrect responses to all parts of the question items.

2.1.6 **Question 6: Gravitation**

The question aimed at assessing the candidates' knowledge about the concept of *Gravitation*. Thus, part (a) required them to (i) explain why the weight of a body becomes zero at the centre of the earth and (ii) determine how far above the earth surface does the value of acceleration due to gravity become 36% of its value on the surface. In part (b), the candidates

were required to (i) compute the period of revolution of a satellite revolving in circular orbit at a height of 3400 km above the earth's surface and (ii) prove that the angular momentum for a satellite of mass M_s revolving round the earth of mass M_e in an orbit of radius r is equal to $\left(GM_eM_s^2r\right)^{\frac{1}{2}}$.

A total of 10,995 candidates corresponding to 58.2 percent attempted this question. Their scores were as follows: 42.9 percent scored below 3.5 marks, including 14.7 percent who scored 0 marks; 22.6 percent scored from 3.5 to 5.5; while 34.5 percent scored from 6 to 10 marks. These data reveal that the candidates' performance on this question was average because 57.1 percent of them scored from 3.5 to 10.

The candidates who scored average marks (3.5 - 5.5) performed well in part (a) (ii) and (b) (i) as they computed correctly the height above the earths' surface and the period of revolution of a satellite. However, they provided wrong responses to other parts of the question. This could have been contributed by their failure to understand that the weight and the acceleration due to gravity become zero due to the fact that the distance from the earths' surface to the centre of the earth becomes equal to the radius of the earth i.e from g = g(1 - d/g), if d = g, then g = 0 and hence $W = m \times g = 0$. In addition, most of them failed to retrieve and compare the required expressions for centripetal and gravitational forces to prove an expression of angular momentum of a satellite as given in part (b) (ii). Extract 6.1 is a sample of a good answer by one candidate.

6	(a) (ii)
	$0.36 = /2 \cdot 1^2$
	Rth
	$0.6 = \frac{12}{12}$
	e+h
	0.6R+0.6h=R
	0.6h = R - 0.6R
	0.6h = 0.4R
	h = 0.4 p 0.4 p
	2.6
	h = 4266.67 km
	Height above = 4266.67 km

Extract 6.1: A sample of a good response given by one of the candidates.

In extract 6.1 the candidate was able to deduce Newton's law of universal gravitation as he/she applied the correct formulae in determining the height, periodic time and deriving an expression of angular momentum.

However, 42.9 percent of the candidates who scored low marks (0 - 3) faced several challenges including failure to provide specific reason on part (a) (i). They also lacked competence in retrieving and conveying the basic concepts of variation of the earth's acceleration due to gravity with depth as well as the formulae guiding planetary motion. Extract 6.2 is a sample of poor responses to this question.

6	(4)
	neves to the center of the
	noves to the center of the
	earth also is polled up by the-
	other part of the earth asresult
	lead be decrease in weight
	But as bedy teaded the
	al the seather the demand both
	earth's tendere the operated pull of the body belonges
	the center Hence this couses
	- constitution of security fortes-
	as both ade on some body.
	As both ade or some body. Hence comestage the body height to become zero
	EC PHEOME ZETC
	11) frem
	1. dures seignight = 2h 1 X 100%.
	7 ,5
	, 3,
	$\frac{36}{100} = 2h$
	1700 184016
	:- p= 36x6400Km
	2 × 100
	h= 1752 Km
	- About 1150km above the earth

Extract 6.2 is a sample of poor response provided by a candidate.

Extract 6.2 indicates how the candidate provided an incorrect reason in part (a) (i) and used incorrect formulae in performing calculations.

2.1.7 Question 7: Thermometers and Thermal Conduction

This question was divided into parts (a) and (b). In part (a), the candidates were required to (i) explain why water is preferred as a cooling agent in many automobile engines and (ii) calculate the boiling point of water on a scale of thermometer with wrong calibration which reads the melting point of ice as - 10 °C and 40 °C in a place where the temperature is 30 °C. Part (b) required them to (i) analyse three practical applications of thermal expansion of solids in daily life situations and (ii) calculate the heat loss per minute by conduction given that a closed metal vessel containing water at 75 °C has a surface area of 0.5 m², uniform thickness of 4.0 m and its outside temperature of 15 °C.

Analysis of the candidates' performance revealed that more than half of them (69.2%) scored low marks, ranging from 0 to 3; 21.3 percent scored from 3.5 to 5.5 marks; while 9.5 percent scored from 6 to 10 as shown in Figure 5.

Figure 5: *The candidates' performance on question 7*

The data illustrated in Figure 5 shows that the candidates' performance in this question was poor because more than half failed to answer the question

by scoring from 0 to 3 marks. Responses from most candidates who scored low marks had many errors, including failure to identify appropriate formula for calculating heat loss and temperature. They also provided invalid reasons as to why water is preferred as a cooling agent in automobile engines. Moreover, they failed to analyse the practical applications of thermal expansion of solids in daily life situations. Extract 7.1 shows a sample of a poor answer by one of the candidates.

7.	A) 1/ Water is prepried as a cooling agent in many automobile engine
	A) ! Water is prepried as a cooling agent in many automobile engine because it has a great parce of affraction which enables the
	enation of the contraction
	- After it is a good conductor of heart end electrosty line to this
	After it is a good conductor of heart end electronity, here to this It enables the engines to be not downwhel.
	(ii) Salution:
	Wrong rathration it reads the melting point of rice as -10°C
	Wrong ratheration it reads the melting point of rice as -10°C
	40-30 = 10°C
	10°C + -10°C = 0°C
	the same of the sa
	in the boiling point of confer on the scale is O'C
	(B) i) Melting at 1000.
	ijithreasie in body-fearperature.
	(B) Melting of 1000. ij Increase in body temperature. Iii Expansion of bridge when code heated.
	/ .] 0

Extract 7.1: A sample of poor response given by a candidate.

Extract 7.1 indicates how the candidate failed to describe thermodynamic scale of temperature by retrieving the required formulae but also, to precisely analyse three practical applications of thermal expansion of solids in daily life activities.

Among the candidates who performed well, 0.4 percent scored all the marks allotted to this question because they had a good understanding of thermometers and thermal conduction. These candidates argued correctly

that water is preferred as a cooling agent in many automobile engines because it has a high specific heat capacity which can absorb a larger amount of heat for a correspondingly small temperature rise. Also they were conversant with the Celsius scale, applications of thermal expansion, and the rate of thermal conduction in solids. An example answer is shown in Extract 7.2; the candidate attempted well each part of the question.

7	
(a)	
Ų	Because it has a high heat capacity thus it can absorb much heat and cause a little change in its internal
	much heat and cause alittle change in its internal
	energy to vapource A.
i)	Soln. Scale 1 Scale 2.
	from, To-To) = To-To
	T100-T0
	1.5
	thus,
	$ \frac{1}{100} - \frac{10}{100} = \frac{30 - 0}{100 - 0} $
	[100 10] [100 -0]
	$\int da + ia = 30$
	$\frac{-9}{\sqrt{1000+10}} = \frac{30}{100}$
	(not the
	_a 50 = 30
	Tuo +10 100
	-0 50 (100) = 30 (T ₁₀₀ +10)
	30 30
	-> 166,667 = Tim +10
	7
	-
	T - 160.777.00
	T ₁₀₀ = 156,667 °C.
	Boiling point of water orthuscale is 156,667°C.
	. Derived hours of miles orillm rate 17 120,001 C.

(P)	Applications of thermal expansion of solids.
	(a) Frechial cables are lossely fitted on polls as a
	(a) Electrical cables are lorsely fitted on poler as a precaution that they will expand when it is hot or they will contract when it is cold.
-	or they will contract when it is cold'
	III D II II II II II
ļ	(b) types carrying not water are fitted with join!
-	at specific intervals. These points allow for smooth
	(b) Pipes carrying hot water are fitted with joints at specific intervals. These points allow foremosts expansion and contraction of the pipe.
-	(c) While ironing clother, the ironing box has a thermostal that works by principle of bimetallie strip hence
	that works by principle of bimetallie strip hence
	controlling the temperature of the morning box.
-	
[i']	50/0-
	Frem,
	Frm, Q = KA (d0) A dx.
	/t dx
-	-0 $Q_{4} = 400 \times 0.5 \times (75-15)$
	(4×10-3)
	0,
	0/t = 3×106 T/c
	6 40.
	$= 3 \times 10^6 \times 60 \text{ s}$
	0/4 - 10 2 - 1
	1/t = 1.8 × 108 Joules pet minute.
	: . Heat loss per monute is 1.8×108 Toules per minute

Extract 7.2 is a sample of good answer by one of the candidates.

In extract 7.2 the candidate stated correctly why water is preferred as a cooling agent and applied the correct formulae and procedure to calculate the boiling point of water and heat loss per minute.

2.1.8 Question 8: Heat (Thermal Conduction and Thermal Radiation)

This question had parts (a) and (b). In part (a), the candidates were required to (i) sketch a graph which illustrates how the energy radiated by a black body is distributed among various wavelengths and (ii) give three

interpretations which would be drawn from the graph in (a) (i). In part (b), they were required to (i) give a reason why stainless steel cooking pans are made with extra copper at the bottom and (ii) calculate the temperature with which the filament lamp of a 10 W lamp would operate if it is supposed to be a perfect black body of area 1 cm².

The question was opted for by 87.1 percent of the candidates. Among them, 28.5 percent scored from 0 to 3; 36.4 percent scored from 3.5 to 5.5 marks; and 35.1 percent scored from 6 to 10. These data reveal that 71.5 percent of the candidates who attempted this question scored from 3.5 to 10, which reflect good performance. Figure 6 illustrates this scenario.

Figure 6: The candidates' performance on question 8

Most of the candidates who demonstrated good performance (6 -10 marks) responded correctly to almost all parts of the question, particularly part (b) which required the knowledge of thermal conductivity and blackbody radiation (Stefan's law). However, part (a) (ii) seemed challenging to some of them as they failed to interpret correctly the graph they were asked to draw in part (a) (i). These candidates failed to recognize that, for a given temperature, the radiant intensity emitted by a black body is maximum for a particular wavelength. In addition, as the temperature of the body increases, the peak of the curve shifts towards a shorter wavelength. Also, the area under the curve gives the total energy radiated by the black body per second per unit area which is directly proportional to the fourth power of absolute temperature. Extract 8.1 presents an example of good responses taken from the script of one of the candidates.

Extract 8.1: A sample of the correct responses provided by a candidate.

Extract 8.1 indicates how the candidate managed to describe spectra of thermal radiation and applied the laws of blackbody in daily life to determine the temperature of the filament.

In the group of the candidates who scored low (0 -3) marks, 8.0 percent lacked knowledge of thermal radiation and presented wrong responses to each tested item; therefore, they scored 0 marks whereas 20.5 percent managed to answer correctly some parts of the question. Also, it was noted that part (a) of this question challenged most of the candidates in this group as they failed to draw and interpret the required graph of radiant energy of a black body against the wavelength. Some of them were totally confused because, instead of sketching the graph showing how the energy radiated by black body varies with wavelength, they attempted to illustrate the penetrating power of electromagnetic waves against various obstacles. Extract 8.2 is a sample of the poor responses presented by one of the candidates.

8	ay (1) process
	Aloha mala la latte l
	B-rachuhon - A Gode
	X-ray radichant
	8-particles radiothers
	B-radiation
	X-ray reduction ->
	,
	11/2 The Alpha reduction howe lowwere
	longth pass in a proce of paper
	-> The B radiation have low fravalong to
	but lan pass Through The proce of paper.
	-o The X-ray radiation thay are throng and howe high frequency and wave
-	And flower high frequency and wave
-	langth.
-	60 a the Aucher that a die conse
-	by ()-0 The Samples stack cooking pant are
-	Mada up coult extra Coppar at the bettom bacause Copper is last haustar of hauf or not coult to trunsfar of hout to the bottom when they we in houstle when
-	or not while to being the of heart L
-	the botton who a the a way in bush a con-
	Cooking -
	Sucorg .
	U/ Solution.
	W 10 - lump popula,
	10 10 - lamp operate,
	fmid = 1cm
	do = K/
1	do A.
	10

Extract 8.2: A sample of an incorrect response provided by a candidate.

In extract 8.2 the candidate drew a diagram illustrating the penetrating power of radioactive particles instead of sketching a graph of radiant energy against wavelength. He/she also applied an incorrect formula in calculating the temperature of the filament ended with wrong result.

2.1.9 Question 9: Current Electricity

In part (a) of this question, the candidates were required to (i) elaborate three significance of dielectric material in a capacitor and (ii) explain the reason behind the loss of electric energy when two capacitors are joined either in series or parallel. In part (b) (i), they were instructed that a researcher had 2 g of gold and wished to form it into a wire of resistance of $80~\Omega$ at 0^{0} C. Then, they were required to calculate the length of the wire which would be formed while in (b) (ii) they were required to calculate potential difference between two points if 5 Joules of work are required to move 10 Coulombs from one point to another.

The question was attempted by 7,428 candidates corresponding to 39.3 percent. Among them, 62.5 percent scored from 0 to 3; 19.7 percent scored from 3.5 to 5.5; while 17.8 percent scored from 6 to 10 marks. These scores suggest that the general performance on this question was poor. The following bar chart is illustrative.

Figure 7: The candidates' performance on question 9

More than half of the candidates who had unsatisfactory performance (62.5%) provided incorrect responses to most of the items. The noted challenges in their responses include lack of knowledge about the function of dielectric material in a capacitor and how the flow of charges affect the electrical energy when two capacitors are joined either in series or parallel. These candidates were unaware that dielectric material keeps the plates apart to avoid charges flowing from one plate to another. In addition, it limits the potential difference that can be applied between such plates. Another observed challenge was the failure to retrieve the formula for resistivity in order to compose an expression for calculating the length of the wire. Extract 9.1 exhibits poor responses by one of the candidates.

joined either in series or parallel are rathen declined energy being in parallel because its does not form a documents so can brings the loss of electrical energy	9.	(9) (1) - used to restore currents.
(ii) loss of electrical energy when two capacitors of joined either in series or parallel are rather electrical energy being in parallel because its does not form a documents so combings the loss of electrical energy		- Used to getted currents
joined either in series or parallel are rathen declined concerns being in parallel because its does not form a documents so can brings the loss of electrical energy		- Used to masure Generates
centered so can brings the loss of electrical energy		(ii) for of electrical energy when two paparitors are
converts so can brings the loss of electrical energy		
		currents so can brings the loss of electrical energy
Kythen two apparator are joined in parallel,		when two apacitor are joined in parallel.

6) (3)	mar - od
	Resistance 80s
-	tong _?
	REAT , morks distance
	12 time
	time = opertune
	Mork
	time = 2
	time = 2
(61	potential difference =?
	Work = 5 Jaules
	Moltage = 10 (of 1 lombs (Courants)
	,
-	YEIR
	7× 10×2
	: V= sovals.

Extract 9.1 is a sample of candidates incorrect responses to the question.

In extract 9.1 the candidate failed to elaborate correctly three significance of dielectric material in a capacitor but also to give a reason behind the loss of electric energy in capacitors.

On the other hand, 37.5 percent of the candidates who scored high (6 - 10) marks include 0.3 percent who wrote the correct responses to each item and scored all marks allotted to this question. These candidates showed a greater understanding of the function of dielectric material in a capacitor and managed to state correctly that energy is lost when capacitors are joined due to heating effect resulting from the flow of charges between the capacitor. In addition, they managed to retrieve and apply the formulae

$$l = \frac{RA}{\rho}$$
 and $V = \frac{W}{Q}$ to calculate the length l of the wire and potential

difference V between the two points respectively. Extract 9.2 presents a sample of responses by one of the candidates with high performance on this question.

9.	(a) (i) Three significances of dialoctric material in a
	capacitor
	+ It provents loss of charge on a
	capacitor
	→ It prevents loss of Alactrical
	anorgy storad in a appacitor
	→ It increases the capacitance of a
	capacitor and hance the potential
	difference botunan plates.
	ii, There is always a loss of alactrical energy when two capacitors are joined either in series or parallal because the two capacitors tand to
	bocomes small, this affacts the capacitance and inturn reduces anargy.
	$\varepsilon = \frac{1}{2}CV^2$ $\varepsilon \prec C$
	(b) a) Data.
	Mass of gold = 2g.
	Rwire = 8052 D1 = 0°C
	l = ?
	go ln -
	$R = f_0 L$ $f_0 = resistants$
	A. g = density
	But 7 mass = 3V
	= JAl.
	*

	Araa = ma99/91.
	Rgold = Jol xfl = Pgl2f
	m m.
	12 - Rom
	12 = Rgm fgf.
	12 = 8052 x 2 x 103kg
	19300 kg m-3 x 2,27x 10-8 21
	$1^2 = 0.16$ 4.581×10^{-4}
	$\sqrt{12} = \sqrt{365 \cdot 205}$
	1 0 11
	L = 19.11m.
	:. The langth of the wire will be
	L = 19.11m.
	Dula
	Data:
ίγ	V. = :
ίγ	Vd= ? Workdone = 5 Joulies.
ίγ	
ĺγ	Workdone = 5 Joulies. Q = 10 Coulomli Goln.
ΪÝ	Workdone = 5 Joules. Q = 10 Coulomli Soln. recall >
iy	Workdone = 5 Joules. Q = 10 coulomli soln. recall > workdone = Potential difference
ľy.	Workdone = 5 Joules. Q = 10 Coulomli Soln. recall >
iy_	Workdone = 5 Joules. Q = 10 coulomli soln. recall > workdone = Potential difference
i y	Workdone = 5 Joules. Q = 10 Coulomli soln. recall > workdone = Potential difference a
iy_	Workdone = 5 Joules. Q = 10 Coulomli sulm. recall > workdone = Patential difference a Pd = 5 J 10 C
ίγ	Workdone = 5 Joules. Q = 10 coulomli goln. recall > workdone = Potential difference a Pd = 5 J

Extract 9.2: A sample of a good response provided by a candidate.

In extract 9.2 the candidate was very precise in applying the correct formulae and procedures in part (b) (i) and (ii).

2.1.10 Question 10: Current Electricity

This question was comprised of two parts titled (a) and (b). Part (a) required the candidates to (i) explain why a room light turns on at once when the switch is closed and (ii) determine the value of conductance given that a current of 3.0 mA flows in a Television resistor R when a potential difference of 6.0 V is connected across its terminals. In part (b), the candidates were given a circuit diagram which contained a capacitor, resistors and three cells of negligible internal resistance as follows:

Then they were required to compute (i) the current passing through 3 Ω resistor and (ii) the charge on the capacitor.

The number of candidates who opted for this question was 15,595, equivalent to 82.5 percent. Their performance was as follows: 72.9 percent scored from 0 to 3; 21.3 percent scored from 3.5 to 5.5; while only 5.8 percent scored from 6 to 10, including 27 candidates who scored all 10 marks allotted to this question.

The general performance on this question was poor since many candidates (72.9%) scored from 0 - 3 marks which is below the pass mark. Further analysis of the candidates' responses to this question reveals, that in part (a) (i), most of them did not know that electromagnetic impulse is transmitted with nearly the speed of light. Hence as soon as the switch is closed, the electric field is established in the whole circuit. Consequently, free electrons in the wire begin drifting everywhere at once. In addition, although the value of current I and potential difference V were given in part (a) (ii), these candidates failed to determine the value of conductance,

which is given as $G = \frac{1}{R} = \frac{I}{V}$. Furthermore, they failed to interpret and identify the direction of current in the circuit diagram and apply Kirchhoff's laws to solve the items in part (b), showing that they lacked knowledge of current electricity. Extract 10.1 is a sample of poor responses to this question.

10.	(A) I/ A room light turn on atonce when the switch is closed the
	(A) if A room light turn on at once when the witch is closed their because of the high speed of electricity to the light.
	s decimals of the following the first of the
1	1) Current = 3.0 mA
	Potential afference = 6.0V
	Concluctance = ?
	CHOQUOINTE
İ	Enductunce = PAtential difference
	Current
	Conductance = 600,
	Ondudance = 600
	= 20
	. The conductance = 2-2
-	The Company of the Co
	(B) solution.
	4 100
	(1) The autrort pairing Through 3-12 revolution. Solut Current = potential difference (V) revisionice (B)
	residance (B)
	R=3-12
	V = 4V
	current = 4
	, S
	B) (ii) Purrent = 4
	3
	= 1·3A
	The current paying through 3-12 revotor is 1.3A.
	I'm carried boards

Extract 10.2: A sample of poor response given by a candidate.

In extract 10.2 the candidate partially stated the reason for item (a) (i) but failed to compute the value of conductance and to apply Kirchhoff's laws in part (b).

However, among the 27.1 percent of the candidates who scored from 3.5 to 10 marks, 5.8 percent (corresponding to 27 candidates) scored all 10 marks. These candidates showed a good understanding of the question as they presented their responses systematically and correctly. For example, most of them provided the reason why a room light turns on at once when the switch is closed. Also, they calculated accurately the value of conductance based on the definition; *conductance is the reciprocal of resistance*. In part (b), they managed to study the circuit and apply Kirchhoff's laws to determine the current passing through the 3 Ω resistor and the charge on the capacitor. Extract 10.2 presents a sample of good responses to this question from one of the candidates.

10	a) (1) Room light turn on at once when the switch is
	closed
,	Beause
	"immediately when the switch is on, the electric
	"Immediately when the furtely is on, the electric field is developed making electrons at every point in the circuit starts Vibrating with us drift velocity and since electric field has a speed optight, it's when room light turn on at
	point in the coronit starts Vibrating with us
	drift velocity and since elective field has a
	speed oplight, it's when room light turn on at
	Once"
	u) Data given:
	Current flowing, I = 3.0m A = 3 x 10-3 A
	Potential différence, V = 6.0 Resistance, R=?
	Kenstance, R=?
	Conductance, e = 7.
	From Ohm's law
	V= IR.
	$C = \frac{C}{L}$
	R = 6.0v
	R = 6.0
	R = 2 kr.
	^ .
	But
	Conductance, C = 1 R.
	. L.

Wa	w) c= 1 = 1
	2000A 2X10+3/1
	$C = 3 \times 10^{-4} \text{T}^{-1}$ Hence Conductance = $5 \times 10^{-4} \text{T}^{-1}$
b	(1) Consider diagram D I, J 12 B 572 19 A
	3v - (12-12)
	6MF T G T LOOPED
	Apply kilhoppis Varment (kcl) law. at junction J $I = I_1 + I_2$
	at Junchion B
	$I_2 = I_3 + (I_2 - I_3)$
	Again
	Applying Kirchoff's voltage law
	Arround
	lugg : 8+3+ Vc - 6[= 0.
	bout
	Var=
	11 + Vc - 61 = 0
	61-Vc = 11 - (1).

10(6)	Around:							
	$loop 2: -8 + 6I + loI_2 + 3(I_2 - I_3) = 0$							
	$-8 + 61 + (01_2 + 31_2 - 31_3 - 0)$ $ 31_2 - 31_3 + 61 = 8 - 2 (u)$							
	Around loops: -4+5[3-3([2-[3) =0							
	-4 +5T3-3I2+3I3 = 0							
	$8I_3 - 3I_2 = 4 - (w)$							
	taking egfn (u)							
	13 T2 - 3 F3 + 6 F = 8							
	but I = Iz+I1.							
	$13I_2 - 3I_3 + 6(I_2 + I_1) = 8$							
	13 I2 - 3 I3 + 6 I2 + 6 I4 = 8							
	1952 + 64 - 353 = 8							
	,							
	but Since in Corpositor, C bear no							
	Current flows then I = 0'							
	Then;							
	1912+6(0)-313=8							
	$19\Gamma_2 - 3\Gamma_3 = 9 \qquad (v)$							
	Oa							
	$8I_3 - 3J_2 = \varphi$							
	$1952 - 3\overline{1}3 = 8$							
	On Johns.							
	Iz = 0.5315A , Iz = 0.6993A							
	Henry the Current through . 352							
	. ie.							
	$= \Gamma_2 - \Gamma_3$							
	= 0.5315-0.6993							

100	= 0.1678A						
	Hence the arrent through 3D 12						
	0·1678 A.						
	M) (Harge on apacitor Prom egfn (1)						
	Prom eafor (1)						
	6 T - VC = (1						
	Vc = 61-11						
	pm I = I+13						
	Vc = 6 (It 12)-11 but I = 0'						
	$N_{C} = 6(0+J_{2})-11$						
	Vc = 6Iz-11						
	NC = 6 (015315)-11						
	NC = 4.811 N.						
	Again from q = cv						
	Q = 6UF x 7.811						
	$Q = 6 \times 10^{-6} \times 7.811$						
	Q = 4.6866 x 10-5 coulomb						
	Hence						
	Charge on the apautor is						
	Q = 4.6866 X105 Coulomb,						

Extract 10.2: A sample of a correct response given by a candidate.

Extract 10.2 indicates how the candidate was competent in applying Ohm's law to determine the conductance but also to analyse electrical network to find the current and charge on the capacitor.

2.1.11 Question 11: Electronics

Part (a) of this question required the candidates to (i) explain why transistors can not be used as rectifiers and (ii) calculate the base current in the NPN transistor circuit of collector current 5 mA if 95 % of the emitted electrons reach the collector region. In part (b), the candidates were

required to (i) explain what causes damage to the transistor and (ii) construct the truth table for the following circuit diagram.

A total of 16,838 candidates (89.1%) attempted this question whereby 33.3 percent scored from 0 to 3; 34.1 percent scored from 3.5 to 5.5 marks; and 32.6 percent scored from 6 to 10 marks. These data reveal that the general performance on this question was good since 66.7 percent of the candidates scored more than one-third of the allotted marks to this question. Figure 8 illustrates this information.

Figure 8: The candidates' performance on question 11

The analysis of the candidates' responses showed that those who scored average (from 3.5 - 5.5) marks managed to answer part (a) of this question correctly. These candidates understood that one of the basic properties for a transistor (semi-conductor device) to operate as a rectifier is that either base-emitter or base-collector has to be used as a diode i.e doping level should be the same. But the three layers of transistors have different doping levels. Therefore, it cannot be used as a rectifier. In addition, they had

adequate knowledge of the concept of *current gain* as well as the relationship of the currents through the base, collector and emitter. Therefore, they calculated correctly the required base current in part (a) (ii). However, some of the candidates who scored from 6 to 10 marks responded correctly in both parts but others were not aware that operating the transistor beyond its maximum rating and excessive heat, which may result from excess current, are the causes of damage to the transistor. Extract 11.1 presents one of a correct response to this question.

11	(6) ĭ·	Tronsutors of tu or or	can	not be	used as	Hea	lifer o	bergu	
	11	flenos	of tu	vo differ	ent p	ort wa	HS JIH	event	Leve	
		A dan	Day He	POVE C	unent u	contation	there:	tere con	n nd	
	1.	1 51	1	and For	/	- / (0-) (0-)	7 1 120	,		
	100	CT 60	a s	renter						
	(11)		sduhm)						
		Green	Tc.	z 5m	n A					
			Ig z	$I_0 + I$	c ·	but	. os at 1	21 = 2		
		Ic = 0	. 2[2C)	**************************************	100			
		~d ·	Po = C	. STe		<u> </u>				
		ord IBSO. SIE - (1)								
		dividing two equation I'c = 0-91 = 2109 In 005								
			Ī,	0.05	19			-		
		$I_{\text{G}} \ge I_{\text{C}} \ge 5 \times 16^{3} \text{A}$								
	 	न्त	19	2	19					
	_	In = 2.031 ×109 A. (Base cyment).								
11	(b)	ĭ'	Excers	current	in the	tronside	rayse	heatin	9	
	(b) i'r Excess current in the tronslator cause heating which leads to domoge of translator, semetimes									
	called thermal runnoway, overheating due to everloding of tonsister.									
	to everloding at transition.									
	ii Truth table for the circuit									
	1		1 put					ouput	7	
		A	B	C	D	£	F	9		
		0	0	1	0	0	1	f		
		Ø		1	1	1	0	1		
		_ 1	0	0	0	0	j	1		
				0	1	()	0	0	1	

Extract 11.1: A sample of good answers by a candidate.

In extract 11.1 the candidate presented precise responses to all parts of the question and scored high marks.

In contrast, the candidates who performed poorly showed little understanding of the concept of *transistor*. They failed to interpret the characteristics of a transistor and its mode of operation. Therefore, they failed to fulfil the demands of the question items. For example, instead of calculating the base current as demanded in part (a) (ii), some of them applied irrelevant formula which gives the collector current. Further analysis on the candidates' responses revealed that some of them completely failed to construct the truth table based on the given circuit diagram implying that they lacked knowledge of the tested concept in this topic. Another observed challenge was the tendency of some candidates to cancel some responses and begin afresh showing that they were not sure about their answers. Extract 11.2 was taken to illustrate this scenario.

11. a) i) (2	lca	use	a	the	in 8	sta) Y	Cou	1	nof	be
11. a) 'i	used	(t	ا مَ	chai	nge	a	1 ter	-na	ti'na	(lum	ent
	in	7 0	dire	et	U	m	ent	,				a ²
	2)	1)	Hig	h	mi	pu	H	219	nali	,	*	
	,											
	Tru	th of	tabl	٤					/			
								/	,			
	.)		1		210						•	
	1	١	0		_/			•				
		0	1									
		0	0			2			100 C C C C C C C C C C C C C C C C C C			
	0	1	1						٠,	*	-	
	0	V	0					70 July 10 Jul	and other transfer transfer			
	6/	0						The state of the state of			Farment	
	6	b	D	The state of the s				A. A				

Extract 11.2: An example of poor responses presented by a candidate.

In extract 11.2 the candidate lacked knowledge of logic gates especially in preparing the truth table of logic combinations.

2.1.12 Question 12: Electronics

The question aimed at determining the candidates' knowledge of operational amplifiers. Therefore, part (a) required them to (i) distinguish between inverting OP–AMP and non-inverting OP–AMP and (ii) give one application of each type of OP–PAMP described in item (i). In part (b), the circuit diagram of a non –inverting amplifier with input and output voltages was given as follows:

Then, the candidates were required to (i) determine the closed loop voltage gain G_{ain} , given that $G_{ain} = 1 + \frac{R_2}{R_1}$, and (ii) use the circuit diagram to show how the expression given in part (b) (i) can be derived.

Data analysis reveals that 79.5 percent of the candidates attempted this question and had the following scores: 30.8 percent scored from 0 to 3 marks; 28.6 percent scored from 3.5 to 5.5; and 40.6 percent scored from 6 to 10 marks. These scores suggest that the candidates' performance on this question was good because more than two-third of them scored the pass mark and above.

The performance of those who scored average (3.5 - 5.5) marks was contributed by the candidates' ability to comprehend correctly the demand of the question on part (a). These candidates managed to distinguish inverting OP-AMP from non-inverting OP-AMP and state the application of operational amplifiers. However, they failed to study and interpret the circuit diagram to show the required steps in deriving the expression $G_{ain} = 1 + \frac{R_2}{R}$. Nevertheless, those who scored higher marks (6 - 10) were

conversant with the topic as they managed to organize and analyse the concept by providing the correct responses to almost all parts of the question. Extract 12.1 is a sample answer taken from the script of one of the candidates who performed well in this question.

	duce a single unitpution which cut the							
negative terminal is connect	negative terminal is connected to the source of potential difference							
while Non-investing DP-AN	up is the operational amplifier in which							
The input is on the positive	terminal of the operational amplifier.							
,								
(h) Innus								
Non inverting DP-AMP	Inverting OP-AMP							
3	,							
	Vin							
Vin +								
	uttillans							
Georgeonog	=							
_	•							

	(a)(ii)(a) Non inverting OP-AMP is need in analog to degital conversion
	whole
	Inverting OP- AAIP is need in Digital to analog conversion
	6*
	A STATE OF THE STA
12	(b) (h) hiven mat;
	R, =90 K-2
	€, = 10 k s.
	. 0
	(i) Required to find untage gain (noin = 4 + Rz
	$\eta_{ain} = 4 + \epsilon_2$
	= 1+ goks2
	10 k &
	= 1 + 90 = 9 + 9 = 10
	10
	= 10
	". Untage gain is 10 Am.
	3 0
12	(b)(i)
	R ₁ a
	yin t
4	7
	No.
	Votage dop across R.
	Votage dop across R.
	Votage drop across R1 Va = (R1) R1+P2
	Votage closp across Re Va = (R) Vo RetP2 By virtual whort
	Votage closp across Re Va = (R) Vo RetP2 By virtual whort
	Votage closp across Re Va = (R) Vo RetP2 By virtual whort
	Untage drop across R1 Va = (R1 R1+P2) By virtual whort Va = Vin Vin = (R1 Vo R1+P2)
	Untage drop across R1 Va = (R1 R1+P2) By virtual whort Va = Vin Vin = (R1 Vo R1+P2)
	Untage drop across Ri Va = Ri Rittle By virtual whort Va = Vin Vin = Ry Voltage genn (Av) = Vout
	Untage drop across Ri Va = Ri Rittle By virtual whort Va = Vin Vin = Ry Voltage genn (Av) = Vout
	Untage drop across Ri Va = Ri Rittle By virtual whort Va = Vin Vin = Ry Voltage genn (Av) = Vout
	Untage drop across Ri Va = Ri Rittle By virtual whort Va = Vin Vin = Ry Voltage genn (Av) = Vout
	Voltage drop across R1 Va = (R1) R1+P2 By virtual whort Va = Vin Vin = (R1) Voltage grun (Av) = Vout Vin Voy = R1+R7 Vin R1 Av = 1 + R7 Where Av = Prain
	Untage drop across Ry Va = (Ry Rith Va = Vin Vin = (Ry Vo Rith Vo Rith Vo Rith Vo

Extract 12.1: A sample of a correct response provided by a candidate.

Extract 12.1 indicates how the candidate used a short and clear method to derive the required formula in part (b) (ii). He/she also managed to describe the properties and mode of action of operational amplifiers.

However, 30.8 percent of the candidates who scored low (0 - 3) marks lacked knowledge of analogue electronics especially operational amplifier as well as mathematical skills. Some of them failed to interpret the given circuit diagram in part (b) and to make a direct substitution of the given values of R_1 and R_2 into the formulae $G_{ain} = 1 + \frac{R_2}{R_1}$. Besides, they

supplied incorrect responses to all items of part (a) of this question. For example, one candidate wrote, *Inverting OP - AMP is the negative terminal of the operational amplifier while non-inverting OP - AMP is the positive terminal of the operational amplifier*. This candidate failed to recognize that an inverting OP - AMP is the one in which input voltage is connected at the inverting terminal and the feedback is applied to the same terminal unlike for non-inverting OP - AMP in which input voltage is connected at the non-inverting terminal and the feedback is applied to the inverting terminal. Extract 12.2 shows one of the responses given by the candidate who could not answer this question.

12 (a). Inverting of AMP - 15the tops
of op-amp where by a fraction of ont put rollage wastrated to the
of out put voltage is abstracted to the
Inverting ter minal (negative ter minal
While.
Mon- inverting OP-AMP is the
type of Op= our p covers by the fract
ion of its output voltage is add
ed to the homin verting terminal which
is positive
(if). invorting of any 10 need toi
to duce the coult put Voltage gamphich
bring stability of Transitor
white 0
hon-inverting increase the out
Vottage gain hence increases instab
Thity of a Familitor
.)

Extract 12.2: A sample of incorrect responses to all parts of the question.

Extract 12.2 indicate how the candidate failed to distinguish between inverting OP–AMP and non-inverting OP–AMP. In part (b) (ii), instead of showing how the given expression for voltage gain G_{ain} is obtained, he/she derived a formula for the voltage gain of inverting OP-AMP.

2.1.13 Question 13: Telecommunication

This question had parts (a) and (b). In part (a), the candidates were required to (i) identify three basic elements of a communication system and (ii) explain why sky waves are not used for transmission of TV signals. In part (b), a labelled diagram showing the essential components of a transmitter for radio broadcasting was given as follows:

The candidates were required to describe the role of each of the components labelled A, B, C, D and E in a communication system.

About three quarter of the candidates (73.5%) opted for this question. Among them, 28.3 percent scored from 0 to 3; 29 percent scored from 3.5 to 5.5; and 42.7 percent scored from 6 to 10. Therefore, 71.7 percent of the candidates who attempted this question scored above the pass marks (3.5 marks), implying that the performance on this question was good. This performance reveals that most of the candidates were competent in the assessed area as they managed to link the acquired knowledge about the functions of various electronic components for radio broadcasting.

The candidates who demonstrated good performance on this question (i.e from 6 - 10) were conversant not only with the concept of telecommunication but also with language skills as they provided correct and brief responses to most parts of the question. They mentioned three basic elements of communication system which are *transmitter*, *communication channel and Receiver* and had clear understanding that sky waves (*ionospheric propagation*) are not used for transmission of TV signals because frequencies of TV waves range from 80 to 200 MHz and the ionosphere cannot reflect back to the earth frequencies greater than 40 MHz. Moreover, they managed to study the given figure in part (b) and

explain the role of the microphone, amplifier, modulator, oscillator and transmitting antenna. On the other hand, most of those who scored average (3.5 - 5.5) marks attempted only part (a). They failed to explain how each of the labelled components of the transmitter facilitates the communication channel. Therefore, they lost some marks. Extract 13.1 presents a sample of good responses to this question.

13 (a)	(i) These are:							
- ()	. Transmitter							
	· Communica	Son channel						
	· Receiver							
	(11) sky way	es are not used for transmission of TV						
	signals bec	ause the frequencies required for the transmission						
	TV stanals	exceed 40 MHz as as a result if they						
	were to be transmitted by sky waves they would not							
		ack onto the earth's surface by the ionosphere.						
	Indead there	would propagate through the ionosohore						
	and escape	would propagate through the ronosphere into space.						
(d)	Component	Role played						
	A	This converts sound into electrical signals.						
	B	This raises the strength of the information						
		This raises the strength of the information signal before modulation is done.						
		4.						
	C	This modulates the high frequency carrier warp with modulating signal necessary						
		wave with modulating signal necessary						
		for the transmission into space						
	D	This creates/produces the high frequency						
		This creates/produces the high frequency carrier wave to be modulated by the						
		information cignal.						
	E	This converts the modulated waves						
		inte electromagnetic waves and send them						
		towards or more distant receivers through space.						

Extract 13.1: A sample of good response given by a candidate.

Extract 13.1 indicate how the candidate managed to provide clear and precise responses to all parts of the question.

In the category of those who scored low (0 - 3) marks, 10 percent of them scored 0. The major challenges these candidates faced include failure to understand the basic elements of the communication system and the ranges of frequencies on which TV signals as well as the sky wave propagation belongs. Additionally, most of them could not perfectly describe the roles of the essential components of the transmitter for radio broadcasting while others skipped this part. The candidates were required to explain the roles as follows: (A) The Microphone converts sound signals into electrical signals, (B) The amplifier raises the strength of weak signals, (C) Modulator-superimposes the signal on the carrier wave in order to carry signal to larger distances, (D) Oscillator-produces a high frequency signal (a carrier wave) and (E) Transmitting antenna- captures the output of the modulator thereby converting the electrical signal into radio waves and transmit them into free space. Extract 13.2 is an example of incorrect responses to this question.

13	a. 1 Microphone
	- Wodulator.
	- Stablizer
	11. Because Thy wave are not star in equilibrium on in that they may use in Temperature or
	fall in temporature and the IV signal can not
	fall in temperature and the TV signal can not ten transmission in that third or structures
18	b. A: if Collects the Sound ma waves and transmitte
	to Amplycer
	B: Amplyier is Amplifies the Sound belower to
	Mechanical kicines:
	C: Modulator + 18 Modulate the Mechanial
	Waves to Hohe Oscillator in ferms of Radio
	wakes
	D Oscillator it oscillate the Kacho wave
	and as in terms of frequency And transmith
	to An Modulator to Antenna.
	E: Transmitting Antenna it give out the Radio
	E: Transmissing Ansenna it give out the Radio Wave as kind transmisse shem to different
	frequency.

Extract 13.2 is a sample of incorrect responses provided by a candidate.

Extract 13.2 shows how the candidate lacked knowledge of the assessed concepts. He/she failed even to state the role of a microphone, which is a common device used in everyday communication.

2.1.14 Question 14: Environmental Physics

This question aimed at assessing the candidates' knowledge about Environmental Physics. Thus, part (a) required them to (i) explain the meaning of epicentre and wind belt as used in Geophysics and (ii) give two positive effects of wind on plant growth. In part (b), the candidates were required to (i) identify three types of seismic waves and (ii) outline two characteristics of each type of wave described in part (b) (i).

A total of 10,915 candidates, corresponding to 57.7 percent, attempted this question. Their scores were as follows: 35.6 percent scored from 0 to 3; 32.6 percent scored from 3.5 to 5.5; while 31.8 percent scored from 6 to 10. These data reveal that the candidates' performance on this question is good because 64.4 percent passed the question by scoring from 3.5 to 10. The following pie chart is illustrative.

Figure 9: The candidates' performance on question 14

The candidates who scored average (3.5 - 5.5) marks were noted to perform well in part (a), but they provided wrong responses to other parts of the question. This was contributed by their failure to identify types of seismic waves and their characteristics. Further analysis on the candidates' performance showed that most of those who scored high (6 - 10) marks attempted well in both parts (a) and (b). They defined well the terms epicentre and wind belt. They also mentioned correctly the three types of seismic waves, which are P-waves, S- waves and Surface waves together

with the characteristics of each. Extract 14.1 is a sample of good responses from the script of one candidate to illustrate this scenario.

14@	i) - Epicentre: - Is a point on the earth's surface thatis
	vertically overhead the hypocentre (focus)
	- Windbells !- Are seasonal strong winds that are
	produced due to unever heating of the
	earth's surface.
14 a.	i) - The prosence of wind provides a cooling effect
	to the plant, through erosion of water droplets
	on the stomata.
	-> It also a mechanism by which seeds, and
	spores are transmitted, hence and
	fertifization.
1	
146)	i) -> Primary wave body waves.
	-> Secondary body waves.
	-> Surface waves.
146).	ii) Characteristizs of Primary body waves
	- They are the fastest seizmiz waves. (7-14/cm/s)
	- They pass through soll and liquid.
	- They are detected first by epi seismic station
	- Characteristics of Secondary body waves
	- They are slow compared 15 primary wave (3:5-7km/1)
	- They travel through solid.
	*
	Characteristics of Jurface waves
	- They Travel only on the surface of the Early
	- They may be travel in a transvene motion or
	ongitudinal motion.

Extract 14.1: A sample of good responses given by a candidate.

Extract 14.1 indicates how the candidate had broad knowledge of environmental physics as he/she responded correctly to each item of the question.

Nevertheless, 35.6 percent of the candidates who scored low (0 - 3) marks attempted to define the terms epicentre and wind belt, but they failed to

organise the concept in a good manner. For example, one candidate wrote: Epicentre is a point within the earth at which wind start and wind belt is a region at the centre of the earth containing movement of air. They were supposed to give the meaning of epicentre as a ground surface directly vertically above the focus of earth quake and wind belt as a seasonal strong wind moving in one direction in a certain region of the earth. Besides, some of them mentioned correctly the two effects of wind on plant growth. However, instead of identifying P-waves, S-waves and surface waves as the three types of seismic waves in relation to earthquake formation, they described electromagnetic and mechanical waves, which are types of waves based on the topic of vibrations and waves. Moreover, among the candidates who scored low marks, 7.7 percent scored zero marks as they failed to provide appropriate responses to each item. These candidates lacked knowledge about the tested areas. Their responses contained many conceptual and grammatical errors. Extract 14.2 shows a sample of poor responses to this question.

140	(i) repicentre _ refier to the region affects To early sente
	by the earthquake in the bankmittion of wind from one point to enother
	of myd from out bout to english
	(ii) wind Belt telp for reproduction (ii) Lep to run out transpiration and brought rainfall
14b	(ii) (i) santiquake maves. (ii) hechanical maves (iii)
	b (i) estedionasnetic weves and stedion for landon to landon. (i) rechanical are store require redion for transmitton.

Extract 14.2: A sample of an incorrect response given by the candidate.

In extract 14.2 the candidate provided incorrect responses to each item. For instance, in part (b), he/she described the types of waves considering the topic of vibrations and waves instead of seismic waves.

2.2 131/2 PHYSICS 2

This paper comprised short answer questions constructed from six topics namely *Fluid dynamics*, *Vibrations and waves*, *Properties of matter*, *Electrostatics*, *Atomic Physics* and *Electromagnetism*. Each question carried 20 marks. The candidate's performance was considered as weak, average and good if the scores range from 0 to 6.5, 7 to 11.5 and 12 to 20 respectively. The pass score for each question was taken from 7 marks and above. The subsequent section analyses performance on each question.

2.2.1 Question 1: Fluid Dynamics

This question had parts (a), (b), (c) and (d). In part (a), the candidates were required to (i) give the meaning of the terms velocity gradient, tangential stress and coefficient of viscosity as used in fluid dynamics (ii) write Stokes' equation and define clearly the meaning of all the symbols used and (iii) state two assumptions used to develop the equation in 1 (a) (ii). In part (b), they were required to calculate the terminal velocity of the rain drops falling in air by assuming that the flow is laminar, the rain drops of diameter 1mm coefficient were spheres and the viscosity $\eta = 1.8 \times 10^{-5} \text{ Ns/m}^2$. Part (c) required the candidates to calculate the force acting on the plate when water flows past a horizontal plate of area 1.2 m² when the velocity gradient and coefficient of viscosity adjacent to the plate are 10 s⁻¹ and 1.3x10⁻⁵ Nsm⁻² respectively. In part (d), the candidates were required to find the volume of water that will flow out of the pipe in 1 minute when water flows through a horizontal pipe of crosssectional area 10 cm² has one section of cross- sectional area 5 cm² and pressure difference between the two sections is 300 Pa.

The question was attempted by 95.4 percent of the candidates. Among them, 11.7 percent scored from 0 to 6.5 marks; 26.1 percent scored from 7 to 11.5 marks; and 62.2 percent scored from 12 to 20 marks. These scores imply that the candidates' performance on this question was good as 88.3 percent scored from 7 to 10. Figure 10 illustrates the performance of the candidates on this question.

Figure 10: Candidates' performance on question 1

The candidates who performed well in this question had an adequate knowledge of fluid dynamics. They managed to define velocity gradient, tangential stress, and coefficient of viscosity. Similarly, these candidates correctly wrote Stokes' equation and stated precisely the assumptions used to develop it. Most of them utilized the appropriate procedures and formula in finding the terminal velocity of the rain drops, force acting on the plate and the volume of water that flows out the pipe. Extract 15.1 shows one of the responses by a candidate who answered the question correctly.

1 @ i/ Velocity gradient refers to the difference in velocity between two points per unit distance between two layers of flowing
in velocity between two points per
unit distance between two layers of flowing
fluid.
Toungential stress
Refers to the porce aching tangentia
Refers to the porce aching tangentian ly to the fluid layers per unit area of the adjacent layers.
the adjacent layers.
Coefficient quiscourty Referr tothe fine acting tangentially per unit velocity gradient in the unit area between the adjacent layers
Refer to the fine a ching tangentrally
per unit velocity gradient in the unit area
between the adjacent layers
1 stokes law
(1) Stokes law F = GTI) r V _T ,
Where
F - Drag Jarce
7 - Coefficient griscosity
r - radius qua Sphenzal body.
F - Drag Jurce 1 - Colffizient gruscocity r - radius q a sphenzal body. Vr - Terminal whocity
(11) - The body must be small and sperfectly spherical
- The body fluid, to which the ball is freely
- The body fluid, to which the ball is freely falling, must be in large extent. example
ocean.
yr 19

1	(B) 25/w.
- 3	Chiven
	Diameter (D)= 1mm, Radius (1)= 0.5mm.
	Coeffeent 9 vilicarity 1= 1.8x10-3
	Coeffraint q vizicanty 1= 1.8 x10 ⁵ Density q water (3) = 1000 kg/m ² Density q air (8) = 1.29 kg/m ³ Acceleration diagraphy (9) = q.8m/s.
	Density 9 air (8) = 1.29 kg/m3
	Acceleration durganty (9)=qi&mls.
	Required: Terminal velocity (Vr)=?
	from, the relation.
	VT = 2r2 (9-8)9
	$V_{\overline{1}} = 2r^2(f-\delta)g$ $91.$
	· · ·
	V= = 2 (0.5x153)2 (1000 - 1.29) x 9.8
	V _T = 2 (0.5x10 ³) ² (1000 - 1.29) x 9.8 9 x 1.8 x 10 ⁻⁵
	1.1107.10
	V ₁ = 4.894 x10 ⁻³
	0.0162
	0.016.5
	VT = 0.302 m/s X102
	1 = 0.302 m/1 x18
	5 To 1 10 - (1/) - 0.242 1 3
	= . Terminal velocity (VT) = 0.302 m/s x102
	= 30.2 m/s.
	cl Solution
	c/ Solution
	Cl Solution Coven
	Coefficient gradient (d/2x) = 101-1 Coefficient gradient (1)= 1.3x10-1 Nsm-2 lequired; force aching (F)= 2
	Cooling Column Cover Area (A) = 1.2m ² Velocity gradient (dyx) = 101-1 Coelhreint gyvisizesty (1) = 1.3x10 ⁻¹ Nsm ⁻² lequired; force aching (F) = 1 from, the Newton law of fluid.
1	Cooperate achag(F)= 1.3x10-1 Nsm-2 lequired; force achag(F)= 1 from, the Newton law of fluid.
1	C/ Solution Cover Area (A) = 1.2m² Velouity gradient (d'/ax) = 101-1 Coefficient grassocty (1)= 1.3x10-1 Nsm² lequired; force aching (F)= 2 from, the Newton law of fluid.
1	C/ Solution Cover Area (A) = 1.2m² Velouity gradient (d'/ax) = 101-1 Coefficient grassocty (1)= 1.3x10-1 Nsm² lequired; force aching (F)= 2 from, the Newton law of fluid.
1	C/ Solution Cover Area (A) = 1.2m² Velouity gradient (d'/ax) = 101-1 Coefficient grassocty (1)= 1.3x10-1 Nsm² lequired; force aching (F)= 2 from, the Newton law of fluid.
1	Coefficient (dyax) = 101-1 Coefficient (grassesty (1) = 1.3x10-1 Nsm-2 lequired; force aching (F) = 2 Them, the Newton law of fluid. c/ From, Newton law of fluid.
1	C/ Solution Conven Area (A) = 1.2m ² Velocity gradient (d/dx) = 101 ⁻¹ Coefficient grassock (1) = 1.3x10 ⁻¹ N1m ⁻² lequired; force aching (F) = 1 from, the Newton law of fluid. C/ From, Newton law of fluid. F = A 1 dV ax.
1	C/ Solution Cover Area (A) = 1.2m² Velouity gradient (d'/ax) = 101-1 Coefficient grassocty (1)= 1.3x10-1 Nsm² lequired; force aching (F)= 2 from, the Newton law of fluid.
1	Coephraint (dyx) = 101-1 Coephraint gradient (dyx) = 101-1 Coephraint gradient (dyx) = 1.3×10-1 Nsm-2 lequired; force aching (F) = 1 from, the Newton law of fluid. C/ From, Newton law of fluid. F = A 1 dy Ax.
1	C/ Solution Conven Area (A) = 1.2m ² Velocity gradient (d/dx) = 101 ⁻¹ Coefficient grassock (1) = 1.3x10 ⁻¹ N1m ⁻² lequired; force aching (F) = 1 from, the Newton law of fluid. C/ From, Newton law of fluid. F = A 1 dV ax.
1	Coephraint (dyx) = 101-1 Coephraint gradient (dyx) = 101-1 Coephraint gradient (dyx) = 1.3×10-1 Nsm-2 lequired; force aching (F) = 1 from, the Newton law of fluid. C/ From, Newton law of fluid. F = A 1 dy Ax.
1	Coefficient Glax) = 101-1 Coefficient Glax) = 101-1 Coefficient Glassecty (1)= 1.3×10-1 Nsm-2 lequired: force aching (F)= 1 from, the Newton law of fluid. C/ From, Newton law of fluid. F = A 1 dv Ax. F = 1.2×1.3×10-5×10.
1	Coephraint (dyx) = 101-1 Coephraint gradient (dyx) = 101-1 Coephraint gradient (dyx) = 1.3×10-1 Nsm-2 lequired; force aching (F) = 1 from, the Newton law of fluid. C/ From, Newton law of fluid. F = A 1 dy Ax.

d/ solution
Cruen:
Area A; = 10cm²
Area Az = 5cm²
Pressure difference DP = 300 Pa
Time (t) = 4min = Gosec.
Time (t) = 1min - Gosec. Required: Volume queter V = ?
2
from the continuity principle
Rate giftow Q = A, V, =k.
To prid the velocity V, through A, Velocity &
through A2
from.
$A_1 V_1 = A_2 V_2,$ $10 \text{cm}^2 \times V_1 = 5 \text{cm}^2 V_2.$
$V_2 = 10 \text{cm}^2 \times V_1$
$V_2 = 2V_1 0$
1 d) To prind velocity V1 and V2 Them, the Remultis principle
principie
P. + 1/29v2 + Shg = k
for homental flow the = K
The state of the s
$P_1 + \frac{1}{2} f v^2 = K.$
$P_1 + \frac{1}{2} f v_1^2 = P_2 + \frac{1}{2} f v_1^2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Delta P = \frac{1}{2} f(v_2^2 - v_1^2),$
$\Delta P = \frac{1}{2} P \left(V_2^2 - V_1^2 \right).$
Em equation - (1) divine
from equation $-(i)$ above $V_2 = 2V_1$
12-20

	$\Delta P = \frac{1}{2} f((2v_1)^2 - v_1^2).$
	$\Delta P = \frac{1}{2} \times 1000 \left(4 V_1^2 - V_1^2 \right)$
	$\Delta P = \frac{1}{2} f((2V_1)^2 - V_1^2).$ $\Delta P = \frac{1}{2} \times 1000 (4V_1^2 - V_1^2).$ $300 = 500 (4V_1^2 - V_1^2).$ $300 = 3V_1^2$
	$300 = 3V_1^2$
	501)
	$0.6 = 3V_1^2$
	3 3
	0,2 = V,2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$V_{i} = 0.45 \text{m/s}.$
	To Irind Velocity V2
-	$V_{2} = 2V_{1} = 2xv.4s = 0.9 m/s$.
1	Rate = V = A, V,
	t V = 10×10-4×0,45
	$\frac{V}{L} = 10 \times 10^{-7} \times 0.45$
	1 A 5 VICT 1
	V = 4.5 X10-4,
	V = 4-5 ×10-4 t., but t= Gosec
	V = 4.5x10-4 x 60
	$V = 0.027 \text{m}^3$
	Volume of water, which will flow out in 1 minute = 0.027 m².

Extract 15.1: A sample of good response provided by the candidate.

In Extract 15.1, the candidate answered correctly all parts of the question.

The candidates who performed poorly in this question did not know the basic concept in fluid dynamics. They failed to define the given terms such as velocity gradient, tangential stress and coefficient of viscosity. For instance, some of them defined velocity gradient as *the average speed of the liquid flowing in the pipe*. They failed to differentiate Stokes' equation

given as $F = 6\pi r \eta v_T$ from Bernoulli's equation given by the relation $P + \rho g h + \frac{1}{2} \rho v^2 = k$. Besides, most of them applied the wrong formula and procedures, ending up getting incorrect values of terminal velocity, the force acting on the plate and the volume of water given out through the pipe. For example, one candidate calculated the force acting on a plate by using the formula $F = \frac{\eta}{A} x \frac{dv}{dy}$ instead of $F = \eta x \frac{dv}{dy} xA$. This candidate did not understand how variable A (cross-sectional area) relates with variable F (force acting on the plate) leading to the incorrect formulae. In general, these candidates had inadequate knowledge and skills in solving questions involving coefficient of viscosity as applied in fluid dynamics. Extract 15.2 is a sample of the incorrect responses given.

	1
1(a)	D. Velocity gradient:
	- As used in build dynamics is the owerage speed of
	fluid throughwhich it flows in the pipe.
	· Tangential Stress:
	-> As used in fluid dynamics is the force in which the
	Fluid flows per area.
	· Coefficient of Viscosing
	- As used in fluid dynamics is the average speed of
	the fluid in which it flows Per unit area of the prope.
	ii) Stoke's esuation:
	i) Stoke's equation; P+8gh + 1/28v2= Constant.
	where:
	P= Pressure.
	Sgh = Potential energy.
	1/2 8v2= Linetic energy

	(1) Assuptions used to develop the equation
	· The fluid is non- Wahle
	· There is no change in energy of the fluid.
	3 9
(b)	Data given!-
	Diameter of rain drop = 1mm
	Coefficient of visiosing = 1.8 × 10-5 No 1m2.
	Terminal velocity = >c.
	remaind remaind = se
-	Area = Tid d = 1 mm (1115-3 m).
	Area = 11 d2, d= 1 mm (1x10-3 m).
500 000	, = (-1)2
	Area - Tc (1x10-3)2
	- 2.111 (1V10-3)2
	= 3.14(1×10-3)2
	yred = J.82 X 10-3 mg.
	Now;
	Now; Terminal velocity = 1.8 × 10 ⁻⁵ 7.85×10 ⁻⁷
	7.85×10-7
	- 22.92.
	The terminal velocity = 22-92 mls.
(0)	Data given:-
	Area = 1.2 m2.
	relocity gradient = 105-1
	Coefficient of vicesing = XDB NSM7. 1.3×105Nsm-2 Force = x.
	Force aching on Plate = Coefficient of visiting X velocity grad
	Area.
	= 1.3Nsm-2 × 10s-1
	1.3 W
	=1.08×10-4 N
	The force acting on plate = 1.08 × 10-4 N

(d) Data given:
Area = 10 cm2 (1x10-3m2) Area = 5cm2. (5x10-4m2)
Area = 5 cm2. (5x 10-4m2)
Pressure = 300 Pa
Ay R = Az Pz.
1x103 m2x 300 = 5x10 tm xP2.
1x10 ⁻³ m ² x 300 = 5x10 ⁻⁴ x P2.
f2= 600 Pa.
: Pressure, = 600Pa.
the mx Mx
601/2 = 1x10-3mxxx10mxm2.
30F= 2×12, XW
201 = 5x10-7m2
20 20
1.67×10-6m3,
3 3 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4
-1.67 × 10 6 m3 with of water will flow out of the pipe in

Extract 15.2: A sample of incorrect responses provided by the candidate.

In Extract 15.2, the candidate failed to give the correct definition of velocity gradient, tangential stress and coefficient of viscosity. He/she stated Bernoulli's theorem instead of Stokes' law and applied the wrong formula to calculate terminal velocity, force acting on a plate and the volume of water flowing out.

2.2.2 Question 2: Vibrations and Waves

This question consisted of parts (a), (b) and (c). In part (a), the candidates were required to (i) provide evidence which proves that sound is a wave and (ii) explain why thunder of lightning is heard some moments after

seeing the flash. Part (b) required the candidates to (i) define Doppler effects and (ii) calculate the frequency of the note heard by the cyclist before and after the train has passed away, when the engine driver of the railway train moving at 20 m/s, sounds a warning siren of frequency 480 Hz to cyclist moving at 10 m/s approaching each other. In part (c), the candidates had been instructed that two sheets of a Polaroid were lined up so that their polarization directions were initially parallel, if one sheet was rotated. Then they were required to (i) explain how the transmitted light intensity varies with the angle between the polaroid must be rotated to reduce the light intensity by 50%.

A total of 11,773 (62.3%) candidates attempted this question. The analysis depicts that 29.8 percent scored from 0 to 6.5, including 3.6 percent of the candidates who scored zero mark; 42.7 percent scored from 7 to 11.5 marks; and 27.5 percent scored from 12 to 20 marks. The general performance on this question was 70.2 percent, indicating good performance. Figure 11 illustrates the performance of the candidates on this question.

Figure 11: Performance of candidates on question 2

The candidates who performed well in this question managed to give the correct evidence that sound is a wave and explained correctly why a flash

of light reaches us earlier than the sound of thunder. They also managed to define the term *Doppler effects* and applied the correct formula in calculating the frequency of the note heard by the cyclist before and after the train had passed. Furthermore, they managed to give the correct relation of how the transmitted light intensity varies with the angle between the polarization directions of the Polaroid as $I = I_o \text{Cos}^2\theta$. Moreover, they calculated correctly the angle which the Polaroid must be rotated to reduce the light intensity by 50%. These candidates seemed to have a good understanding of vibrations and waves particularly in Doppler effects, sound waves, light waves and polarization of waves. They showed great competence in using Malus law to portray the relationship between the transmitted light intensity and the angle between the polarization directions of the Polaroid. Extract 16.1 is a sample response by a candidate who answered the question correctly.

2 (a) (i) One evidence which proves that sound is a wave is: Existence of echoes. Decho refers to a replected sermo. On of the properties of vaves is that: waves can be replected for this reason sound is a wave. 2 (a) (ii) This is because hight travels paster than Sound. Speed of hight = 2 × 10 8 m/s For this reason lightning is heard some numeral after seeing the frach 2 (b) (i) Doppler effect repert to the approvent change in frequency of a wave or wavelength of a wave when there is refative methon between the source of sound or light and the observer. 2 (c) (ii) Proper of the properties of the approvent than the observer of sound or light and the ten the source of sound or light and the observer. 2 (d) (ii) Properties of the properties of the source of sound or light and the observer. 2 (l) (ii) Speed Given Speed of Cyclist Uo = 10 m/s Artical frequency of Siren, f = 480Hz Let, The frequency heard by the cyclist before the frain has passed away The frequency heard by the cyclist after the train has passed away.		
on of the properties of naves is that: waves can be replected for this reason sound is a wave. 2 (a) (ii) this is because light travels faster than Sound Speed of light = 2×108 m/s Speed of secund in air = 3 youn/s For this reason lighting is beard some numeral after seeing the float 2 (b) (i) Doppler effect repert to the approvent change in requency of a wave or wavelength of a wave when there is relative metrics between the course of sound or light and the observer. 2 (b) (ii) Speed Given speed of cyclist, Uo = 10 m/s speed of rain, Us = 20 m/s Actual frequency of Siren, f = 430tte	2	(a) (i) One evidence which proves that sound is
on of the properties of naves is that: waves can be replected for this reason sound is a wave. 2 (a) (ii) this is because light travels faster than Sound Speed of light = 2×108 m/s Speed of secund in air = 3 youn/s For this reason lighting is beard some numeral after seeing the float 2 (b) (i) Doppler effect repert to the approvent change in requency of a wave or wavelength of a wave when there is relative metrics between the course of sound or light and the observer. 2 (b) (ii) Speed Given speed of cyclist, Uo = 10 m/s speed of rain, Us = 20 m/s Actual frequency of Siren, f = 430tte		a wave is: Existence of echoes.
2 (a) (ii) This is because hight travels faster than Sound. Speed of light = 2×108 m/s Speed of served in air = 3 youn/s For this reason lightning is heard some numerals after seeing the float 2 (b) (i) Doppler effect refer to the approvent charge in frequency of a wave or wavelength of a vave when there is relative metion between the source of sound or light and the observer. 2 (b) (ii) Speed Given speed of Cyclist, Uo = 10 m/s speed of train, Us = 20 m/s Actual frequency of siren, f = 480 Hz		→ Echo repres to a replected sorm d.
2 (a) (ii) This is because hight travels faster than Sound. Speed of light = 2×108 m/s Speed of served in air = 3 youn/s For this reason lightning is heard some numerals after seeing the float 2 (b) (i) Doppler effect refer to the approvent charge in frequency of a wave or wavelength of a vave when there is relative metion between the source of sound or light and the observer. 2 (b) (ii) Speed Given speed of Cyclist, Uo = 10 m/s speed of train, Us = 20 m/s Actual frequency of siren, f = 480 Hz		on of the properties of naves is that:
2 (a) (ii) This is because hight travels faster than Sound. Speed of light = 2×108 m/s Speed of served in air = 3 youn/s For this reason lightning is heard some numerals after seeing the float 2 (b) (i) Doppler effect refer to the approvent charge in frequency of a wave or wavelength of a vave when there is relative metion between the source of sound or light and the observer. 2 (b) (ii) Speed Given speed of Cyclist, Uo = 10 m/s speed of train, Us = 20 m/s Actual frequency of siren, f = 480 Hz		waves can be replaced. For this reason
2 (a) (ii) This is because hight travels faster than Sound. Speed of light = 2×108 m/s Speed of served in air = 3 youn/s For this reason lightning is heard some numerals after seeing the float 2 (b) (i) Doppler effect refer to the approvent charge in frequency of a wave or wavelength of a vave when there is relative metion between the source of sound or light and the observer. 2 (b) (ii) Speed Given speed of Cyclist, Uo = 10 m/s speed of train, Us = 20 m/s Actual frequency of siren, f = 480 Hz		sound is a wone.
Speed of light = 2×10 m/s Speed of secund in air = 3 yom/s For this reason lightning is heard some numerous after seeing the float 2 (b) (i) Dappler effect report to the approvent change in frequency of a wave or wavelength of a vave when there is relative metrion between the source of sound or light and the observer. 2 (b) (ii) Speed Given Speed of Cyclist Uo = 10 m/s Speed of Fram, Us = 20 m/s Arual frequency of Siren, f = 480ttz		
Speed of light = 2×10 m/s Speed of secund in air = 3 yom/s For this reason lightning is heard some numerous after seeing the float 2 (b) (i) Dappler effect report to the approvent change in frequency of a wave or wavelength of a vave when there is relative metrion between the source of sound or light and the observer. 2 (b) (ii) Speed Given Speed of Cyclist Uo = 10 m/s Speed of Fram, Us = 20 m/s Arual frequency of Siren, f = 480ttz	2	(a) (ii) This is because light travels paster than
2 (b) (i) Doppler effect repert to the approvent change in frequency of a wave or wavelength of a wave when there is relative metrin between the course of sound or light and the observer. 2 (b) (u) Speed Given Speed of Cyclist Uo = 10 m/s Speed of Fram, Us = 20m/s Artual frequency of Siren, f = 480ttz		Somo
2 (b) (i) Doppler effect repert to the approvent change in frequency of a wave or wavelength of a wave when there is relative metrin between the course of sound or light and the observer. 2 (b) (u) Speed Given Speed of Cyclist Uo = 10 m/s Speed of Fram, Us = 20m/s Artual frequency of Siren, f = 480ttz		Speed of light = 2 × 108 m/s
2 (b) (i) Doppler effect repert to the approvent change in frequency of a wave or wavelength of a wave when there is relative metrin between the course of sound or light and the observer. 2 (b) (u) Speed Given Speed of Cyclist Uo = 10 m/s Speed of Fram, Us = 20m/s Artual frequency of Siren, f = 480ttz		Speed of served in air = 3 yours
2 (b) (i) Doppler effect repert to the approvent change in frequency of a wave or wavelength of a wave when there is relative metrin between the course of sound or light and the observer. 2 (b) (u) Speed Given Speed of Cyclist Uo = 10 m/s Speed of Fram, Us = 20m/s Artual frequency of Siren, f = 480ttz		For this reason lightning is heard some numerity
2 (b) (i) Doppler effect repert to the approvent change in frequency of a wave or wavelength of a wave when there is relative metrin between the course of sound or light and the observer. 2 (b) (u) Speed Given Speed of Cyclist Uo = 10 m/s Speed of Fram, Us = 20m/s Artual frequency of Siren, f = 480ttz		after seeing the flach
2 (b) (u) Speed Given speed of cyclist Uo = 10 m/s speed of train, Us = 20m/s Artual frequency of siren, f = 480Hz		
2 (b) (u) Speed Given speed of cyclist Uo = 10 m/s speed of train, Us = 20m/s Artual frequency of siren, f = 480Hz	2	(b) (1) Doppler effect repert to the approvent charge
2 (b) (u) Speed Given speed of cyclist Uo = 10 m/s speed of train, Us = 20m/s Artual frequency of siren, f = 480Hz		in frequency of a wave or wavelength of
2 (b) (u) Speed Given speed of cyclist Uo = 10 m/s speed of train, Us = 20m/s Artual frequency of siren, f = 480Hz		a verse when there is relative motion between
2 (b) (ii) Speed Given Speed of cyclist Uo = 10 m/s Speed of Fain, Us = 20m/s Azual frequency of Gren, f = 480Hz		ean the source of sound or light and the
Speed of cyclist, U. = 10 m/s Speed of train, Us = 20m/s Artual frequency of Siren, f = 480Hz		oksener.
Speed of cyclist, U. = 10 m/s Speed of train, Us = 20m/s Artual frequency of Siren, f = 480Hz		
Actual frequency of Gren, = 480ttz	2	(b) (u) Sport Given
Actual frequency of Gren, = 480ttz		speed of cyclist, Uo = 10 m/s
		speed of train, Us = 20m/s
		Artual trequency of siven, 7 = 480ttz
f'= frequency hears by the cyclist before the frain has passed away f" = frequency hears by the cyclist after the frain has passed away.		(0)
frain has passed away f" = frequency heard by the cyclist after the train has passed away.		f'= frequency heard by the cyclid before the
I'm = frequency heard by the cyclist after the train has passed away.		train has passed away
The train has paised away.		I" = frequency heard by the cyclist after
V		The train has passed away.
		V

2 (b) (u)
Now,
$f' = \begin{bmatrix} V + U_0 \\ V - U_s \end{bmatrix} f.$
V-Us)
Where V= Velocity of sound in air.
V = 340m/s.
$f' = \left(\frac{340 + 10}{346 - 20} \right) \times 480 = 525 \text{ Hz}.$
Again
Ham
f" = [V - Uc] 7 V + Us] 7
$f'' = [390 - 10] \times 980 = 990 \text{ Hz}.$
L340+20)
fequency heard before the train passes, f'= 525tt.
Frequency heard after the train passes = "= 440 Hz.
7"=440/12.
2 b (c) (1) Using Malus Equation,
I = To Cos20.
Where, Io = Intensity of light framsmilled by the
that palanció

2 (C) (i) I = Intensity of light transmitted by the 2nd polaroid. 0 = Angle between the transmission axes of the 1st and 2nd polaroid.
2nd polaroid.
0 = Angle between the transmission axes
of the 1st and 2nd allowid.
of ive 2 and 5 papers.
2 (c) (u) let,
Ic = Intensity of light transmitted by 1st polain
T= Intousing of light transmitted by 2nd pulario
A = Angle between transmission axes
Ic = Intensity of light transmitted by 1st polarior [= Intensity of light transmitted by 2nd pularior 0 = Angle between transmission axes of the 1st and 2nd pularior
from, I= To Cost - Malus Equation.
$T_{c} > Cal^{2}\Theta$
T = Cas 0
T. X1007 - Co120 201007
I/ x100% = Cos2 0 x100%
10
J/x100% = 50%.
as
50% = cos 0 × 100%.
$\cos^2 \theta = 50 = 0.5$
/
Cos 20 - 0.5
$\cos \theta = \sqrt{0.5} = 0.7071$
Q = (03 ¹ (0-7071) = 45°.
. The polaroid must be rotated 45 to
. The polaroid must be rotated 45° to reduce intensity of light by 50%.

Extract 16.1 is a sample of good response provided by the candidate.

In Extract 16.1, the candidate provided the correct responses to the question. He/she precisely explained the phenomenon and applied the correct formula in calculating frequency.

Contrarily, the candidates who scored low marks in this question provided incorrect evidence to prove that sound is a wave and failed to explain why a flash of light reaches us earlier than the sound of thunder. For example, one candidate explained why a flash reaches us earlier as *because the flash passes the clouds tends to collapse each other and hence sound is heard after the flash* which is completely wrong. This candidate was supposed to remember that light waves which travel through the vacuum have a greater speed (3×10⁸ m/s) than sound waves (330 m/s) which travel through a given material medium. Accordingly, the flash of light reaches us earlier than the sound of thunder. Some of them, in part (b) (ii), confused the formula of finding apparent frequency of approaching with the separation

of source and observer. They used $f' = \left(\frac{v + v_o}{v - v_s}\right) \times f$ as the formula of

separation/moving away instead of $f'' = \left(\frac{v - v_o}{v + v_s}\right) \times f$ and vice versa. They

also faced problems in attempting part (c) which based on the concept of polarization. In this part, they wrongly explained how the intensity of light varies with the angle between the polarizations directions of the Polaroid. They also used the wrong formula to calculate the angle between the Polaroids for the light intensity to be reduced by 50%. This shows that most of them lacked content knowledge and mathematical skills in solving problems encompassing vibrations and waves especially in polarization. Extract 16.2 is an example of the incorrect responses given by one of the candidates.

02	(9) (1) Jood is a wome, This is because it
	causes the disturbances propagated disturbances
	and require the medium to be passed.
	(11) Thunder of lightening is heard some.
	(i) Thunder of lightening is heard some. Thoment apter seeing the blash, this is because as the plash passes the clouds tends to collapse each other and hence sound is heard agoter the
	as the places the clouds tends to collapse
	each other and hence sound is heard agoter the
	Idash.
	V

(b) (i) Doppler exact - This is the apparent
(b) (i) Doppler efact - This is the apparent Change in homes as the source and the Observer comes close or par away from Cach other.
Cach other.
'
(ii) (b) n Data Univen:
Speed of Cyclist (V6) = 10 ms1.
Speed of Cychist (Vo) = 10ms1. There of tain (Vi) = 20ms1. Frequency (+) = 480 Hz. Regulared: trequency before and after their Fain has passed.
frequency (+) = 480 Hz.
Fain has passed.
,
02 (b) (ii) CASE I. Before the train has passed.
Before the train has passed.
#' = [V - Vo] x /
$\mathbf{j}' = \begin{pmatrix} \sqrt{-\sqrt{6}} \\ \sqrt{-\sqrt{3}} \end{pmatrix} \times \mathbf{j}$
1
$f' = \frac{340 \text{ms}^{-1} - 10 \text{ms}^{-1}}{340 \text{ms}^{-1} + 20 \text{ms}^{-1}} \times 480 \text{Hz}.$
(340 MJ + 20 MJ +
fl = 440Hz.
Thomas the tolerance noted by the contest
Therefore, the frequency poted by the cychist before the train has passed is 440Hz.
,
Opter the train has passed.
(NE TOTAL)
$f'' = \left \frac{\sqrt{6} + \sqrt{6}}{\sqrt{-3}} \right \sqrt{2} f$
J (V-V ₄)
14 = (340m (1 +70m (1) , 2001)
1 = 340m51 +20m51 x 480 H2.
$f'' = 525 H_2$.
Therefore the Frequency botal by the cyclist
Therefore, the frequency poted by the cychil ageter the train has passed is 525 Hz.

02(e)(1)	Consider.
	i
-	
The tri	Inverted light intensity vary with the trees the polarization direction by claricals as the results the polarists on different angles and hence cause the number of light.
angle be	theen the polarization direction of
the pe	planoids as the results the polaroids
mill ber	m at the angles and hence cause The
Vaniduio	as of the tolensing of light.
& IT	re polareral mout be relatated to the
initial	re planered mout be related to the angle of the joint polarized.
	() Y V
	(10)m
	tan 0 = 11.
	14100-4
	0=tan-14.
	$Q = \tan^7 1.5$
	() [(, 04),
	D=56,31°,
	0=90-0
	0'=90-0. 0'=90-56:31 $0'=33:69^{3}$. $13 33:69^{6}$.
	01= 33,69°
o: Thera	nyle 15 33:69°.
	(

Extract 16.2: A sample of incorrect response given by a candidate.

In extract 16.2, the candidate wrote the incorrect explanation of the thunder of lightning heard some moment after seeing the flash. He/she used the wrong formula in calculating the apparent frequency and angle that the Polaroid must be rotated for the intensity of light to be 50%.

2.2.3 Question 3: Vibrations and Waves

was 2.13 mm.

This question had three parts (a), (b), and (c). Part (a) required the candidates to (i) give the meaning of wave function, longitudinal wave, and transverse wave and (ii) show that the maximum velocity of a progressive wave travelling in the +x-direction with equation y = asin(wt - kx) is given as $v_{max} = \frac{2\pi a}{T}$. In part (b), they were required to (i) give the meaning of diffraction grating (ii) determine the angle at which the bright diffraction images will be observed when a diffraction grating has 500 lines per millimetre used with monochromatic light of wavelength 6 x 10^{-7} m at the normal incidence and (iii) explain why other orders of image in 3 (b) (ii) cannot be observed. In part (c), the candidates were required to (i) state Huygens's principle of wave construction and (ii) determine the wave length of monochromatic light when illuminated on a lens placed with

A total of 9133 (48.3%) candidates attempted this question. The analysis of data shows that 33.0 percent scored from 0 to 6.5 marks; 34.7 percent scored from 7 to 11.5 marks; and 32.3 percent scored from 12 to 20 marks. Figure 12 presents the performance of the candidates on this question.

convex surface of radius of curvature 50 cm in contact with the plane surface which resulting into Newton's rings whose radius of the 15th ring

Figure 12: The candidates' performance on question 3

understanding of vibrations and waves. They managed to define correctly the terms wave function, longitudinal waves and transverse waves. They also managed to show clearly that $v_{max} = \frac{2\pi a}{T}$ from displacement equation $y = a\sin(wt - kx)$. They also managed to give the correct definition of diffraction grating and to retrieve the correct formula in finding the angle at which the bright diffraction images are observed. Moreover, they stated Huygens's principle and found the wave length correctly. Extract 17.1 shows a sample of responses by one of the

candidates who provided correct answers to all parts of the question.

The candidates who performed well in this question had a good

3.	(a) (i) Wave function is a function which describes wave motions it consists of time and displacement as well as angular phase. $f(x,t) = a Sin(\omega t + \phi).$
	# Longitudinal wave is the type of mechanical waves in which the particles more paralles to the direction of propagation of the wave.
	Transverse wave: Is the type of mechanical waves whereby the particles vibrates perpendicular to the smectrum of propagation of a wave.
3	(a)(ii) Given: $y = a Sin (\omega t - kx)$. $V = dy = d (a Sin (\omega t - kx))$ dt
	T / Vmax = 211a/
<u>3</u> ,	(b) (1). Defraction grating is the number of many equispaced parallel lines ruled on a glass or metal.
	(ii) $g = 500$ lines lmm $\lambda = 6 \times 10^{-9} m$. Regured, α .

3. (b)(ii) from!
$m\lambda = 4\sin \alpha$
Sma = mx;
d
$Q = S_{m-1}(m)/d$
d = 1/q
J
$d = (500)^{-1} = 2 \times 10^{6} \text{ m}$
$0 = \sin^{-1}\left(\frac{m\lambda}{2\times10^{-6}}\right)$
, ,
$= \operatorname{Gin}^{-1}\left(\frac{m \times 6 \times 10^{7} \text{m}}{2 \times 10^{-6} \text{m}}\right)$
0 = Sin-1(0.3m).
for $m=1$; $A = Sin^{-1}(0.3)$ = 12.45° .
= 19.45°.
for $M = 2$; $Q = 6n^{-1}(2 \times 0.3)$ $Q = 5n^{-1}(0.6)$
0 = 20, (0,0)
= 36.86
for $M = 3$, $Q = G_{N-1}(3 \times 0.73)$.
$0 = 8n^{-1}(0.9)$ = 64.15°
for $m = 4'$, $0 = 6^{-1}(4 \times 0.3)$ = $6^{-1}(1.2)$
= 00 ,
3(b) (iii). The other orders, from m=4,5,6 are not observed
because they are diminished, that is the amplitude, decreases
to the extent that it can not be observed
I TO THE EXTEND IN ON I I COM I HOLD DE OCCUPACION

(2) (1) Huygen's Principle of wave Construction state That "Every point on the wave front act as a secundary source of wavelets in the direction of travel of a weve is perpendicular to wavefront and wavefront are equilistant from the source" (ii) R = 50an. Im = 2.13mm. lequired, \(\). Im = 2Rt -t^2. Im = 2R	3 (C)(i) Huyaen's Principle el wave construction	state
Mave front and wave fint are equilistant from the source! (ii) $\cdot R = 50 \text{cm}$. $\cdot R = 2 \cdot 13 \text{rm}$. (2R-t)t = $\cdot R \times 1$ $\cdot R = 2 \cdot 13 \text{rm}$. (2R-t)t = $\cdot R \times 1$ $\cdot R = 2 \cdot 13 \text{rm}$ $\cdot R = 2 \cdot 13 \cdot 1$ $\cdot R = 1 \cdot 13 \cdot 1$ $\cdot R = 2 \cdot 13 \cdot 1$ $\cdot R = 2 \cdot 13 \cdot 1$ $\cdot R = 15^{\text{th}}$ $\cdot R = 15^{\text{th}}$ $\cdot R = 15^{\text{th}}$ $\cdot R = 15^{\text{th}}$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15 \cdot 15 \cdot 15$ $\cdot R = 15 \cdot 15$	that " Every point on the wave for	st gost
Mave front and wave fint are equilistant from the source! (ii) $\cdot R = 50 \text{cm}$. $\cdot R = 2 \cdot 13 \text{rm}$. (2R-t)t = $\cdot R \times 10^{-2} \text{cm}$ $\cdot R = 2 \cdot 12 \text{cm}$. (2R-t)t = $\cdot R \times 10^{-2} \text{cm}$ $\cdot R = 2 \cdot 12 \text{cm}$ $\cdot R = 13 \text{cm}$ $\cdot R = 13 \text{cm}$ $\cdot R = 2 \cdot 13 \text{cm}$ $\cdot R = 2 \cdot 13 \text{cm}$ $\cdot R = 15^{\text{th}}$ $\cdot R = 15^{\text{th}}$ $\cdot R = 15^{\text{th}}$ $\cdot R = 15 \text{cm}$ $\cdot R = 15 cm$	as a secondary source of manufaction the	~e`
Wavefrunt and wavefrunt are equilistant from the source" (ii) $R = 50am$. $r_m = 2.13mm$. Required, λ . $r_m^2 = 2Rt - t^2$. $r_m^2 = 2Rt$. $r_m^2 = m\lambda R$. $r_m^2 = \lambda$	direction of travel of aware is accordicular	4.
(ii) $R = 50am$. $r_m = 2 \cdot 13mm$. Required, λ . $2R + 1$ 2	Mare front and wavefout and equilistrat for the	muca!!
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(i) R = 50an 4	32000
Dequired, λ . $2R+1$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dogwood > .	
$ \frac{(2R-t)t}{r_{m}^{2}} = 2Rt - t^{2}. $ $ \frac{r_{m}^{2}}{r_{m}^{2}} = 2Rt - t^{2}. $ $ \frac{r_{m}^{2}}{r_{m}^{2}} = R(2t). \text{ but } 2t = m but$	20	
$ \frac{(2R-t)t}{r_{m}^{2}} = 2Rt - t^{2}. $ $ \frac{r_{m}^{2}}{r_{m}^{2}} = 2Rt - t^{2}. $ $ \frac{r_{m}^{2}}{r_{m}^{2}} = R(2t). \text{ but } 2t = m but$	4 cm - rm of	
$\frac{1}{100} = \frac{1}{100}$	$(2R-t)t = r_m \times$	
$\frac{1}{100} = \frac{1}{100}$	$r_m^2 = 2Rt - t^2$	
$\frac{1}{100} = \frac{1}{100}$	m ~ 2Rt.	
$\frac{1}{100} = \frac{1}{100}$	$r_m^2 = R(2t)$, but $2t = m\lambda$.	
$\frac{1}{100} = \frac{1}{100}$	$l_{2}^{m} = m \times g$,
$\frac{1}{m} = \frac{1}{2}$ $\frac{1}{m} = \frac{1}{2}$ $\frac{1}{m} = \frac{1}{2}$ $\frac{1}{m} = \frac{1}{2}$ $\frac{1}{3} = \frac{1}{3} \times \frac{10^{-3}}{3}$ $\frac{1}{m} = \frac{1}{2}$ $\frac{1}{3} = \frac{1}{3} \times \frac{10^{-3}}{3}$ $\frac{1}{3} \times \frac{1}{3} \times \frac{10^{-3}}{3} \times \frac{10^{-3}}{3}$ $\frac{1}{3} \times \frac{1}{3} \times \frac{10^{-3}}{3} \times \frac{10^{-3}}{3} \times \frac{10^{-3}}{3}$ $\frac{1}{3} \times \frac{1}{3} \times \frac{10^{-3}}{3} \times 10^{-3$	in = /wyb.	
$ \lambda = \Gamma_{1}^{R} = 248 \times 10^{-2} \\ MR $ $ \Gamma_{m} = 2 \cdot 13 mm = 2 \cdot 13 \times 10^{-3} m $ $ \Gamma_{m}^{2} = 4 \cdot 5369 \times 10^{-6} m^{2} $ $ R = 15^{16} $ $ \lambda = \Gamma_{m}^{2} = (2 \cdot 13 \times 10^{-3})^{2} \Rightarrow 0$ $ \Gamma_{15 \times 0.5} = 4 \cdot 5369 \times 10^{-6} m^{2} $	$l_{m}^2 = \lambda$	
$f_{m} = 2.13 \text{ mm} = 2.13 \times 10^{-3} \text{ m}$ $f_{m}^{2} = 4.5369 \times 10^{-6} \text{ m}^{2}$ $R = 0.5 \text{ m}$ $m = 15^{th}$ $\lambda = f_{m}^{2} = (2.13 \times 10^{-3})^{2} \Rightarrow$ $mR = 15 \times 0.5$ $mR = 4.5369 \times 10^{-6} \text{ m}^{2}$	mR	
$f_{m} = 2.13 \text{ mm} = 2.13 \times 10^{-3} \text{ m}$ $f_{m}^{2} = 4.5369 \times 10^{-6} \text{ m}^{2}$ $R = 0.5 \text{ m}$ $m = 15^{th}$ $\lambda = f_{m}^{2} = (2.13 \times 10^{-3})^{2} \Rightarrow$ $mR = 15 \times 0.5$ $mR = 4.5369 \times 10^{-6} \text{ m}^{2}$	$\lambda = r_{i}^{A} = 248 \times 10^{-1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mp.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$r_{m} = 2.13 \text{mm} = 2.13 \text{x} 10^{-3} \text{m}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$r_{\rm m}^2 = 4.5369 \times 10^{-6} {\rm m}^2$	
$\lambda = \frac{r_{m}^{2}}{mR} = \frac{(2.13 \times 10^{-3})^{2}}{15 \times 0.5}$ $= 4.5369 \times 10^{-6} \text{m}^{2}$	R = 0.5 m.	
= 4.5369 x 10-6m2	m = 15 th	
= 4.5369 x 10-6m2	$\lambda = \frac{\Gamma_m^2}{\Gamma_m} = (2.13 \times 10^{-3})^2 \rightarrow$	
= 4.5369 x 10-6m2	MR 15 x 0.5	
15 × 6.5	$=4.5369 \times 10^{-6} \text{m}^2$	
· · · · · · · · · · · · · · · · · · ·	15 × 6 · 5	
15 × 6.5 = 6.04 92 × 10-2m	= 6.0492 × 10-2m	
. The wavelength is 6.0492 × 15°m.	The wairelength is 6.0492 × 10 m.	

Extract 17.1: A sample of correct response given by the candidate.

In Extract 17.1, the candidate managed to provide correct responses to each part of the question. He/she performed correct numerical calculations to determine the angle at which the bright diffraction images will be observed and the wavelength of the monochromatic light used to produce Newton's rings.

The candidates who scored low marks in this question failed to give explanations mostly in parts (a) (i), (b) (iii) and (c) (i). They failed to give the correct definition of wave functions, longitudinal waves and transverse waves. For example, one candidate defined wave functions as the number of fringes times the distance, instead of an equation which involves displacement x and time t describing the motion of the wave. In part (b) (iii), they failed to say why other order of image cannot be observed. The candidates were supposed to know that the diffraction images cannot be observed if $\sin\theta$ exceeds 1. For this case, the diffraction images will be observed at angles $\theta = 17.46^{\circ}$, 36.87° and 64.12° when the diffraction orders are m = 1, 2 and 3 respectively. Moreover, they applied inappropriate formulae in some parts of the question. For example, one candidate used the simple wave formula to find the wavelength of the monochromatic light in Newton's rings experiment as $f\lambda = v$ instead of $r_m^2 = mR\lambda$ for dark rings and $r_m^2 = (m + \frac{1}{2})R\lambda$ as used in Newton's ring. This indicates that the candidates lacked knowledge about vibrations and waves. They also did not know about the formation of interference patterns in Newton's ring experiment in particular. Extract 17.2 is a sample of responses from one of the candidate who gave incorrect answers to all parts of the question.

ე,	(a) (i) Wave function is the number of fringes times the
	distance.
	Longitudinal wave is the wave in which frequency, wavelongth
	and velocity of particles are in uniform, do not greatly vary
	In this case wave travely vortrally.
	Transvene wave is the wave in which wavelength, frequency
	and velocity of particles are varying greatly. In this case
	wave travels horizontally,
	J
3.	(a) (i) y= a sm (wt-kx) given;
	Required: To show that Vnax = 2119.
	1
	at maximum velocity sin (wt-kx)=1.
	$y = a \sin(\omega t - kx)$
	y = a.
	from
	f=¼.
	7

3,	(Or (b) (ii) Given diffraction grating = 500 lines per millimetro. Wavelength = 6x10-7m.
	Needed: Angle at which the bright diffraction images will be observed.
	from:
	Ø = 2λG.
	$Q = 1.2 \times 10^{-6} \text{ radians.}$
	$Q = 1.2 \times 10^{-6} \text{ radians},$
	(iii) Other orders of images can not be observed due to dark
	(e) (D) Huggen's principle of wave contraction states that: Wave is formed when light or sound particles moving with
	the same frequency relocity and wavelength interact and travel
	together in the same direction Vertically horizontally or
	perpendicular from the same source.
	(i) Radius of curvature = 50.0 cm = (0.5 m)
	(i) Radius of curvature = 50.0 cm = (0.5 m) Radius of the 15th mong = 2.13 mm = (2.13 × 10 m)
	Wavelength:
	From f = V/.
	$\lambda = \frac{V}{f}$.
	λ = radius of carvature radius of the 15th ring.
	radius of the 15th ring.
3.	(2) (c) (b) = $\lambda = \frac{0.5 \text{ m}}{2.12 \times 10^{-3} \text{m}}$
	$\lambda = 234.74.$
	The wavelength is 234.74m.

Extract 17.2: A sample of incorrect response provided by one of the candidates.

In Extract 17.2, the candidate failed to provide the correct meaning of the terms wave function, longitudinal waves and transverse waves. In part (c) (ii), he/she applied the incorrect formula to determine wavelength in Newton's ring leading to the wrong answers.

2.2.4 Question 4: Properties of Matter

This question comprised parts (a), (b), and (c). In part (a), the candidates were required to (i) define Young's modulus of a material and (ii) explain why work is said to be done in stretching the wire. In part (b) the candidates were given information that a steel wire AB of the length 60 cm and cross sectional area 1.5 x 10⁻⁶ m² was attached at B with a copper wire BC of length 39 cm and cross sectional area 3.0 x 10⁻⁶ m², and that the combination of the two pieces of wire was suspended vertically from a fixed point at A and supports a weight of 250N. The candidates were required to find the extension (in millimetre) of the (i) steel wire and (ii) copper wire. Part (c) required the candidates to apply the kinetic theory of gases to determine (i) the average translational kinetic energy of air at a temperature of 290 K and (ii) the root mean square speed (r.m.s) of air at the same temperature as in 4(c) (i).

A total of 15,557 candidates, equivalent to 82.3 percent, attempted this question. The analysis of data reveals that 19.1 percent scored from 0 to 6.5; 52.9 percent scored from 7 to 11.5 marks; and 28.0 percent scored from 12 to 20 marks. Only 15 candidates (0.1%) scored all 20 marks in this question. The analysis of this question shows that the performance was good as 80.9 percent of the candidates scored from 7 to 20 marks. Figure 13 illustrates the performance of the candidates on this question.

Figure 13: The candidates' performance on question 4

On one hand, the candidates who scored high marks in this question had a good knowledge of solving problems about the properties of matter by attempting most of this question correctly. Most of them managed to define the term Young's modulus of the material and explain correctly why work is said to be done in stretching a piece of wire. They also managed to recall the correct formula of Young's modulus in calculating the extension of

steel and copper wire. They showed the ability to apply the kinetic theory of gases to determine the root mean square speed (r.m.s) of air in part (c) (ii). Extract 18.1 shows the answer by one candidate who performed well in this question.

1C A	
9(4)	
(1)	Young's Moduly of a material.
	= 1 his is the ratio between the normal
	Young's Modulus of a material. This is the ratio between the normal stress applied on a body to the Strain produced by a body.
	las a lastr
	by a play.
(salet & 1 & to be done in the bless of which
Ci	Work 13 Jain 10 be done in stretuing a wife because
	lustrally molecules of whe have milecular
	potential energy which bilding themselves, so
	on stretching you overome that potential
	energy and Calse them to have new greater
	every of potential than before because you
	Work is said to be done in stretching a wive, because withally molecules of wire here molecular potential energy which binding themselves, so on stretching you overnome that potential energy and cause them to have new greater energy of potential than before because you move molecular of will have the custom without
	Land the array to many a party had me
	venic, in energy to overlouse perential or
	Typermolecular fone of attriction between
	move molecules of whe far agast another hence, the energy to ovenouse potential or lutermolecular fone of attachon between mileutes of wires is taken as workdone in stretching a curve
	stretching a use
4(6)	Nata given.
	lougth of steel wire = 60 mg = 0.6 m.
	Crefis sectional area of wive tel 1.5×10-6m2
	length of apper unve = 19 cm - 0.39 m.
	Data given. Lougth of steel wire = 60 cm = 0.6 m. Cress sectional area of wresteel 1.5 x 10-6 m² length of Copper wire = 71 cm = 0.29 m. Cross fectional area of Copper = 7.0 x 10-6 m². Force, whight applied = 250 N.
	D Extension in Steel cure.
	<u>*n</u>
	0.6m. 0.6m.
	B
	0 39m Te of steel
	0.79m
	ie of boppen
	25017
	250N.
	fore of applied is the Jame, But the
	extension in steel whe is;
	ested = FL
	AT
	2 k 250 NX 0.6m
	1.5×10-6m2×2.0×10"Nm2 = 5×10-4 m.
	But Im =01000mm.
	5×10 m =0 ?
	-D.0.5 mm.
	Extension of the steel wive = 0.5 mm

4610 Extension of apper use.
2 copper = PL
AT,
=257NX0.39m
9.0 X w-6 m2 X /. 7 X 1011 Nm-2
= 2.5 × 10 m
20 25 mm
Extension of Copper wire = 0.75mm
, , ,
4000 Average trustational kinetic energy of air at a temperature of 290k.
at a temperature of 290k.
From.
From. Prom.
/3
But PV = MG.
nr = / Nm2.
brute by 2 throughout
My z 1 Mmc ² 2 J Z. Iny z Mmc ² z kiE.
7n1 - Nn 2 - KIE
LE = 7 RT P. + R-o Moltzmanny
K.E = 3rt Put p-o Doltzmann's
Aut KE = 7x1.78x10-2371/239626
)
KE = 6.00) X10-21 J. Lenge translational trucks energy of air
- Lenge translational trucki energy of art
at temperature of 298k 11 6.003 X 10 21 J.
M longler m of white 12 Good Vila

Extract 18.1: A sample of good response given by the candidate.

In Extract 18.1, the candidate defined the term Young's modulus correctly and explained why work is said to be done in stretching a piece of wire. Consequently, the candidate applied the correct formula to do the calculations.

On the other hand, the candidates who scored low marks in this question lacked knowledge about the properties of matter. They failed to define Young's modulus of material and to explain why work is said to be done in a stretching wire. In order to define Young's modulus of a material, the candidates were supposed to know that it involves a ratio of tensile stress to tensile strain. Therefore, when a wire is stretched, the intermolecular forces oppose the increase in length of the wire. Work has thus to be done against these forces which appear as the elastic potential energy stored in the wire.

Since most of them failed to express Young's modulus equation, they were susceptible to using the wrong formula in finding the extension of steel and copper wire which led them to obtain incorrect answers. For example, in part (b) one candidate used the formula $e = \frac{F}{L} \div \frac{A}{L} = \frac{F}{A}$ to find extension which is the formula for pressure instead of $e = \frac{FL}{AE}$. Some of them failed to apply kinetic theory of gases in finding translational kinetic energy and the root mean square speed (r.m.s) of air molecules. One candidate confused the formula of translational kinetic energy of air molecules $(k.e = \frac{3}{2}kT)$ with that of moving bodies $(k.e = \frac{1}{2}mv^2)$ in (c) (i). Extract 18.2 is an example of incorrect answer by one of the candidates.

4a)	i) Young's Modulus of a material is the force
	per area per prese
40)	i) Younge modulus - is the property of a material
	which shows how a material can be most pluster or the elasticity of a material.
	elacts or the elactsity of a material.
(0)	ii) Work is used to be dire in tracking a
447	wise the 13 decents in streeting of whe
	the streeting has to cover some destapa
	and also when stretching there is a stretching
	pro so pre x distance brings workedone.
46)	مامک
	Steel wire (AA)
	L= 60cm
	A = 1.5×10.6m2
	(opper wie (AC)
	L= 39cm A= 3.0×106m2
	A = S DAID IN
	L= 99am A= 4.5 ×10-06
	D Force
	Length

46)	Steel whe
	F, : A,
	<u>'</u> L
	2501 - 15×10 ⁶ 60
	1/2
	2501 - 15×10 ⁻⁶ 2501 - 15×10 ⁻⁶ 2501 - 15×10 ⁻⁶ 15×10 ⁻⁶
	$=6\times10^{-9}$ mm
	. The extension of steel wire is 6x10-9mm
	· · · · · · · · · · · · · · · · · · ·
<u> </u>	Copper wite.
	FL = 1/4
	250. 1 29.
	250, - 39, 39 3.0×10-6
	64× 1.17×104
	= 1017 X10 mm
•	
	The extension of steel whe is 1-17×109
	· ·

4c)	یامی
	D Pv= 1, mnu
	8
	Kinetic energy = 1/mv²
	Buttzmanns = 1.38×10237k-1
	290k
1.00-90-1	,
	V= 4.8×10-26
	K:E= 1/ (m v2)
	$k \cdot E = 1/2 (2 \times 4.8 \times 10^{-26})$
	k-E= 4.8 ×10-26
	The kinetic energy is 4.8×10.267
40)	i) alos. (ii
	$\sqrt{u^2} = \sqrt{290}$
	Ty = 17.03
	. The not mean equare speed is 17.03

Extract 18.2: A sample of incorrect response provided by the candidate.

Extract 18.2 is a response of a candidate who failed to define the terms correctly and used an inappropriate formula to perform calculations, leading to incorrect answers.

2.2.5 Question 5: Electrostatics

This question was divided into parts (a), (b) and (c). In part (a), the candidates were required to (i) define the terms electric potential and electric field-strength E at a point in the electrostatic field and (ii) show how the electric potential and electric field strength are related. In part (b),

the candidates were required to calculate (i) the potential at the surface of the sphere and (ii) capacitance of the sphere, provided that outside the sphere, a charged sphere behaves like its charges were concentrated at the centre and that the electric field strength inside the sphere is zero where one sphere of radius 5.0 cm carries a positive charge of 6.7 nC. In part (c), the candidates were given Figure 1 which shows two horizontal parallel conducting plates in vacuum.

Then, they were asked, If a small particle of mass 4×10^{-12} kg carries a positive charge of 3.0×10^{-14} C is released at point A close to the upper plate, calculate: (i) the total force acting on the particle and (ii) the kinetic energy of the particle when it reaches the lower plate.

The question was attempted by 23.7 percent of candidates. Among them, 29.0 percent scored from 0 to 6.5 marks; 35.5 percent scored from 7 to 11.5 marks; and 35.2 scored from 12 to 20 marks. From this analysis, the general performance of the candidates on this question was good as 71.0 percent of candidates scored from 7 to 20 marks. Figure 14 indicates the performance of the candidates on this question.

Figure 14: The candidates' performance on question 5

The candidates who performed well in this question were knowledgeable about the concept of electrostatics especially on the electric field strength and electric potential. They managed to define correctly the terms electric potential and electric field strength. They also succeeded to show mathematically how the two quantities are related as $E = \frac{dV}{dr}$ or $E = -\frac{dV}{dr}$.

Besides, they applied the correct formula in calculating the potential at the surface of the sphere and its capacitance. In part (c), they managed to calculate the total force acting on the particle by using the formula $F_T = F_E + F_g$ and its kinetic energy of the particle when it reaches the lower plate. Extract 19.1 is a response of one of the candidates who performed well.

	@
5	(1) Electric potential.
	Electr notabil at a point is
	desired as the work done
	In moving a unit bositive charge
	from intents to that point in
	(1) Electric potential. Electric potential at a point is defined as fle work done In moving a cent positive charge from infinity to that point in an electric field.
	1.1
	Electric held strength E
	Is the seems title force
	expenenced per unit position
	Electric field strength E 1s the Electropathic force expensioned per unit positive charge placed at a point in an electric field.
	an electre field.
	V
	7- 6
	(Ey Relgion
	Kelghon
	E = -dv dx
	where
	E 15 the field strongth
	1) I'll Electre potentia
	oc 13 distance
	oc 13 austance
	ie the electre bield chancel !!
	ie He electre field strength 15 He negative gradient of the potential
	ontential:
	10 100 101

5	(b) Given:
	sohow verbys t = 5 x/0-2m
	Sphere vachus $T = 5 \times 10^{-2} \text{ m}$. Charge $q = 4 \cdot 6.7 \times 10^{-9} \text{ C}$.
-	(i) potential,
	recall that, a
	Ve call that, $A = \int \frac{d}{dr}$ $V = -\int \frac{d}{dr} \frac{dr}{dr}$ $V = -V = \frac{1}{2} \int -1 \int \frac{dr}{r}$
	00 4 The 12.
	-V = 2 [-1]* 41150 - 100
	4 to 50 - Job
	-v= -g 4th/60 x
	V = 2 4550r
	450r.
	V=(1) 2x1
	$V = \begin{pmatrix} 1 & 0 & x \\ 4\pi & 0 \end{pmatrix} \qquad \nabla \times \frac{1}{1}$ $V = 9 \times 10^{9} \times 6.7 \times 10^{9} \times \frac{1}{1}$
	$V = 9 \times 10^9 \times 6.7 \times 10^{-9} \times 1$
	V= +1206 U
	sphere 1, 1206
5	(b) · ·
	(ii) capantine
	R OHI I
	by depresson,
	$c = \frac{2}{V}$
	V = 19 4001.
	yuro /
	(= 9 x 45 EV
	$\overline{\mathcal{V}}$

	c = 4480r
	1/4 to 5
	$C = \frac{5 \times 10^{-2}}{9 \times 10^{9}}$
	:- the Capartnee of the Sphere () 5-556 X10-12 F
5	(c)
	Given Mass $m = 4xi \overline{x} t_3$ $chirge $
	for the force taking weight into account, $F = F_E + W$ $F = gE + mg$
	$E = \frac{v}{d}.$ $E = \frac{v}{d} + ms.$
	F= 3 x10 14 x 350 + 4x1012x95.
	F= 1-442 x10-10 N
	fortal force on the particle is p4+2 110-10 m

5	(c) (w)
	from put (1) above, F = 10442 ×10-10 N.
	f_{n} $a = f_{n}$
	$\alpha = \frac{1 - 442 \times 10^{-10}}{4 \times 10^{-12}}$ $\alpha = \frac{36.05}{9} \text{ m s}^{2}$
	velouty agreed at loner plates
	$N^2 = U^2 + 2as$ $N^2 = 2 da$
	$N = \int 2 \times 36.05 \times 0.01$
	Eineh energy Fix = 1 m v2.
	FK= 1-442 210-11 J
	i. kinesi Energy acquired 13 1-442 x1011 &
	$v = \sqrt{72} / 2 2-686/4 \text{ ms}^{2}$ Einehn energy $E_{K} = 1/m v^{2}$ $E_{K} = 1/x 4x10^{12} x (\sqrt{721})^{2}$ $E_{K} = 1/x 4x10^{12} x (\sqrt{721})^{2}$

Extract 19.1: A sample of the correct response given by one of the candidates.

In Extract 19.1, the candidate gave the correct responses according to the requirements of the question. He/she managed to recall and apply the formula for finding electric potential at the surface of the sphere, capacitance of the sphere, the total force acting on a particle and its kinetic energy.

Contrarily, the candidates who scored low marks (0 - 6.5) lacked knowledge about electrostatics. Some of them gave the wrong definitions of electric potential (V) and electric field strength (E). Hence they failed to

address all parts of the question and scored zero. For example one of the candidates wrongly defined electric potential as the ratio between charge and electric field strength instead of the work done in bringing a unit positive charge from infinity to a point. Others failed to give the correct relation between V and E, as shown in the responses of one of the candidate that $r^2 = kV$ in place of $E = \frac{dV}{dr}$ or $E = -\frac{dV}{dr}$. They also failed to apply the correct formula in calculating the electric potential and capacitance of the sphere. In part (c), most of the candidates failed to identify the forces acting on a particle and used the wrong formula to calculate the kinetic energy. A good example is from one candidate who wrote the formula for force acting on a particle falling in air as F = mg - Uinstead of writing the formula for a particle falling in electric fields as $F_T = F_E + F_g$ The candidates were required to use the formula for the energy stored in capacitor as $U = \frac{1}{2}cv^2$ in calculating the kinetic energy of alpha particles instead of just writing the formula $(K.E = \frac{1}{2}m_p v_p^2)$. This indicates that they lacked knowledge about the general concept of electrostatics. Extract 19.2 is a sample of the wrong responses to this question.

5	Electric potential is the retion between aharge and -
	electric gold while Electric gold-strength - 11 to pone
	requires to attract plange at distort level.
	(1)
	Relatio:
	E = F/ a)
	/9
	E= 9/ (11). E1=E2 = E Than F/ = 9./ 9 //
	E1=E2 = E Than F/= 9/
	le N.
	$E_1 = E_2$ = E Than $F_1 = Q_1$ $Q_2 = F_1$. $Q_3 = F_2$. $Q_4 = F_3$. $Q_5 = F_3$.
	F-K9192/ assume 191-4,-2.
	/2.
	92/= kg2V
	12
	12 = KV.

56 from:
given Date:
(adus of sphere, 1 = 5cm (5x102m)
Chaga, & = 67nc (6.7x10 Tc).
from:
C = 411 & r.
C=411 x 8-8 x10-12 x (5x162)
C=411 x 8-8 x 10 ⁻¹² x (5x 10 ⁻²) = 5.53 x 10 ⁻¹² .
= 5.53pf.
1. Θ - Δχιο΄ 9 = 5.53 ρ · · · · · · · · · · · · · · · · · ·
@ 2
V= 6.7x109
E-CIX 16-12
V = 1.212V
-1. (i) Potental et the surfice of sphoo were 1.212V.
(1) Potental et the surface of sphoo were 1.212V. (11) Capactance of the sphere 5.53 pf or 5.53×1026
Ge. Guon.
Ge. Givon:
A 1
Com (Pox 102)
+250V UF A 100m(kx162) mg = U+F.
mg = U + F.
F= Vd., U= 4/11 1 1 9
F= V/J., U= 4/3 Tir2 fg.
(i) Force, F = mg -U
Carren =
man fporhale, m= 4x1012 kg.
Acceleration du la grantin po= 9-8 m/2.
Charge, 0 = 30 × 10 14
F= [4410'2 x9.2] - 1-8x10'Ckst
F= [4x10"2 x9-8] - 1-8x10"Ckst
(1) K.E=1 MN2. or 1 CN2.
K-E= 1/x 3-0810 14 x (310)
= 5.2[XIO-12].
- 5 2(1/0 5

Extract 19.2: A sample of incorrect response provided by the candidate.

In extract 19.2, the candidate gave an incorrect definition of electric potential and electric field strength. They also applied the incorrect formula to calculate the kinetic energy of the particle.

2.2.6 Question 6: Electrostatics

This question consisted of parts (a), (b) and (c). Part (a) required the candidates to (i) give the meaning of dielectric constant and (ii) state Coulomb's law of force between two electrically charged bodies. In part (b), the candidates were required to (i) agree or disagree and give a reason if there can be a potential difference between two adjacent conductors carrying the same positive charge and (ii) find final charge of each plate if a parallel plate capacitor with air as a dielectric, plates of area 4.0×10^{-2} m² and 20 mm apart charged to 100 V battery, when connected in parallel with a similar unchanged capacitor with plates of half the area and twice the distance apart under neglecting edge effect. Part (c) required the candidates to: (i) derive an expression for the total capacitance of two capacitors C_1 and C_2 connected in a series and (ii) calculate the charge and potential difference across each capacitor when two capacitors of 15 μ F and 20 μ F are connected in a series with a 600 V supply.

A total of 7,674 (40.6%) candidates attempted this question. Among them, 26.4 percent scored from 0 to 6.5 marks, including 2.3 percent of candidates who scored zero; 38.1 percent scored from 7 to 11.5 marks; and 35.5 percent scored from 12 to 20 marks. A total of 340 (1.8%) candidates managed to score full marks, 20 out of 20 marks. These scores suggest that the performance was good since 73.6 percent of the candidates scored from 7 to 20 marks. Figure 15 represents the performance of the candidates on this question.

Figure 15: The candidates' performance on question 6

The observations made from the responses in the script of those who performed well in this question show that most candidates managed to define dielectric constant and to state correctly Coulomb's law of force between two charges. In part (c), they managed to derive an expression for the total capacitance of two capacitors C_1 and C_2 connected in a series and applied the correct formula to calculate the charge and potential difference across each capacitor. This indicates that these candidates had content knowledge and were good at numerical calculations. Extract 20.1 presents a sample of the correct responses by one of the candidates who answered the question.

66);	Didadric constant to the ratio of the absolute parantity permitted of the particular material to absolute parantity of air
	Colore law state that "The electrostatic for of attractor or
	fatures of reboughous, confined hebryones to retroned to the
(b) 7.	
	(1= (x10mx 8-20x10) (2= 102 E0
	(5=4454X101, E
	Jan- 9, +9,= (1+(1) V
	(1.77×15° × 1000) +0 = (1.77×15° +4.425×15") V 1.77×15° × 2.2125×10° V V= 80V
	Then $Q_2 = CeV$
	92=(4. 421×10" ×40) C 92= 3. 54×109 C
	$Q_1 = (S_0 \times 1.99 \times 3^{-6})$ $Q_1 = 1.416 \times 10^{-8} C$
	index on fit expector = 1416×10°C and the other

(c);	fra Q V	
	v= 9/c	
	1= 4 + 1 2 V= -1 + 1 2	7000
******	0= 9/c1+ P/c2	
	0(/a)= (/u+1/12)	30.0
	Yu= /4/12	
	, , , , , , , , , , , , , , , , , , , ,	1900
	(T= C1(2	
	446	
****	15MF 20HF	-
ή;.		
	6014	
-	2	
	Trun	Arso
	CT= CHC	600 1 = V(184F) + V(204F)
	= 4×10 × 20×10	
	1111 - 515 - 5	1(sobt)=600-1(18ME)
	CZ= 8.501 X126	V(2045)=600-(242-WIV)
	Tha	V(20NR) = 252/43V
	Q ZCV)
	Q = \$-STIXTO XODO	· Potantico difference
	0= 5.142×1536	- 1 2011
****	-: though on each copador =5.142xTi3	at 20MF =
	No.	259.142
	V = 0 - 5.141X102	
	(100060)	
	Jan Q= C1V1 V1 = 9 = 5.142X152 (15X164) V1 = 342-857V	
	1- 342-85 N	
	- Fotenhal difference at 19MF= 242-85	<u>3) \</u>
(b)	YEI,	
	Because the two contrators	may differ in dimensions
	(rodius) hence differen	u in potential difference
		1 11 11

Extract 20.1: A sample of the correct response given by a candidate.

Extract 20.1 shows the answer by a candidate who correctly defined the term dielectric constant, stated Coulomb's law of force correctly and followed proper procedures in deriving the expression for the total capacitance and finally did the calculations appropriately.

The candidates who performed poorly in this question did not have adequate knowledge of the basic concept in electrostatics. They confused some terms such as dielectric constant with dielectric material. Accordingly, some of them defined dielectric constant as *non-conducting material placed in capacitors* instead of the ratio of the permittivity of material medium to that of free space. They also failed to state Coulomb's law properly. In addition, some of them derived the expression of the total capacitance of two capacitors connected in parallel ($C_T = C_1 + C_2$) instead

of a series connection $(C_T = \frac{C_1 C_2}{C_2 + C_1})$. Hence, they obtained the wrong

total charge and potential difference. Extract 20.2 shows a sample of poor responses by one of the candidates who provided incorrect answers to all parts of the question.

6@(i) Refers to the non-waducking maderial Placed in a
Capacitus purposely for increasing Capacitor's Charge
Callying Capacity.
(11) "The bice between how electrically charged bodies is directive directly proportional to their magnitudes and inversely proportional to the square of their distance of separation"
directive directly proportional to their magnitudes and
inversely proportional to the square of their distance of
Separation":
(b) (1) No, there (an not be a potential difference between two
(b) (i) No, there can not be a potential difference between two adjustent conductors carrying the same positive charge. The
reson is
for a potential difference to occur between two adjacent
Conductors, polarization of charges should take place. Hence
Due to this there will also be no potential difference
Due to his there will also be no potential difference
between two adjacent Conductors Callying he same position
Charge.
(ii) Solution
(I) Southon
$\frac{\pi(e_{i})}{(e_{i})} = \frac{\varphi(0)}{(e_{i})} = \frac{\varphi(0)}$
Area (A ₁) = $4 \cdot 0 \times 10^{-2} \text{m}^2$
$A_1 = \frac{1}{3}A_1 = \frac{1}{3} \times 4.0 \times 10^{-2} = 0.02 \text{ m}^2$
$d_2 = 2d_1 = 2 \times 2 \times 10^{-2} = 4 \times 10^{-2} M$
$Q_{1} = ?$
form,
Q = CV
W- EaA V
$\varphi = \underbrace{\varepsilon_0 A}_{d} V$
$\omega_1 = \mathcal{E}_0 A_1 \vee \dots \vee \mathcal{E}_{\nu} = \mathcal{E}_0 A_{\nu} \vee \dots \vee \mathcal{E}_{\nu} = \mathcal{E}_{\nu} \wedge \dots \wedge \mathcal{E}_{\nu} = \mathcal{E}_{\nu} \wedge \dots \wedge \mathcal{E}_{\nu} = \mathcal{E}_{\nu} \wedge \dots \wedge \mathcal{E}_{\nu} = \mathcal{E}_{\nu} \wedge \dots \vee \mathcal{E}_{\nu} = \mathcal{E}_{\nu} \wedge \dots \wedge \mathcal{E}_$
di di

6(5)	$(1) Q_1 - Q_2 A_1 V - Q_3 = 23 \times 10^{-12} \times 0.00 \times 10^{-2} \times 100 V$
CONÍ	(i) $Q_1 = \mathcal{L}_0 A_1 V - \mathcal{L}_0 = 3.8 \times 10^{-12} \times 9.0 \times 10^{-2} \times 100 V$
	9, = 1.76x 10-8 C.
	$Q_2 = \frac{\epsilon_0 A_2 V}{dz} = \frac{8.8 \times 10^{-12} \times 0.02 \times 100 + 0.00}{4 \times 10^{-2}}$
	Qz = 4.4 x 10-9 c.
	Final charge on plate 1 is 176x10-8c. Final charge on plate 2 is 4.4x10-9c.
	final charge on plate 1 is 176 x 10-8c.
	final charge on place 2 is 4.4 × 10-4C
(2)	
. (0	(1) To derive an expression for total capacitance of two
	Capacitis G and E, Connected in Series
	from $Q = Q_1 + Q_2$.
	Q = CV. ' V= Q/
	C .
	V = Q1 + Q2
	but $Q_1 = C_1 V_1$
	but, $Q_1 = C_1 V_1$ $Q_2 = C_2 V_2$
	$V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2} =(i).$
	flum, $Q = Q_1 + Q_2$ $C_1 V = C_1 V_1 + C_2 V_2$
	$\frac{C_{\tau}\left(\frac{C_{1}V_{1}+(c_{1}V_{2})}{C_{1}+(c_{2})}\right)=(c_{1}V_{1}+c_{2}V_{2})}{C_{1}V_{1}+c_{2}V_{2}}$
	, .
	((1), + (2), = ((1), + (2)) ((1+(2))
	$C_{\overline{1}} = C_1 + C_2.$
	Hence, for total capaciting, Cr = (1+Cz
	in Series

60	Solution	
(II)	(p= (1 + Cz-	
Capi.	Co = 154f + 204f.	
	(p= (15x10=4) + (20x10=6)	
	(p = (1 + Cz · Cox 10-6) (p = (15x10-x) + (20x10-6) (p = 3.5 x 10-5 f · Cox 10-6)	
	Hom.	
	Q = Q V	
	A = 32 (b = 3.2 x 10-2t.	
	V = 600V	
	Q = 3.5 × 10 ⁻⁵ f × 600V Q = 0.021 C	
	Q = 0.021 C.	
	On Capaghi I C,	
	On (apaghi 1 C, Q = C, V.	
	Q = C = 600V	
	C1 = Q = 0.021c	
	X	
	V = Q = 0.021	
	$V = Q = 0.021$ $C_1 = 15 \times 10^{-6}$	
	V = 1400V on Capacida 2 C1. $V = 4$ C2	
	V = 4/	
	<u></u>	
	$V = O \cdot OQI$	
	20 1 10-6	
	V = 1000V	
	U=1050V' Heng. Charge is 0.071C. Un capación 1, potential difference 1400V.	
	Un Capacher!, potential difference 14cov	
	un capacitus 2, potential difference, 10500	

Extract 20.2: A sample of incorrect response given by a candidate.

In Extract 20.2, the candidate failed to define dielectric constant, incorrectly stated Coulomb's law of force and derived the wrong formula for series connection.

2.2.7 Question 7: Atomic Physics

The question was divided into parts (a), (b) and (c). In part (a), the candidates were required to (i) determine the wavelength of the series limit of Paschen series based on the Balmer series of hydrogen spectra and (ii) explain why electrons do not fall into the nucleus due to the electrostatic force of attraction. In part (b), they were required to (i) explain why the hydrogen atom is stable in the ground state and (ii) use mathematical equation to express the statement of Bohr's theory which state that the angular momentum of an electron is an integral multiple of $\frac{h}{2\pi}$ in which angular momentum is represented by the letter L and orbit by the letter n and (iii) determine the angular momentum of the electron in the orbit of energy level -3.4eV given that $E_n = \frac{-13.6}{n^2} \text{ eV}$, where E is the energy of an electron and n is the principal quantum number of the hydrogen atom. Part (c) required the candidates to read carefully the following figure which represents a series of lines obtained when the excited electron of an atom of a certain element falls back.

Then the candidates were required to (i) account for the observed convergence of the lines from A to F and (ii) identify spectral series to which the spectrum belongs if the energy value of line A is -1.51 eV considering the energy value of each line in the spectrum can be calculated using the equation $E_n = \frac{-13.6}{n^2} \text{ eV}$.

A total of 14,233 (75.3%) candidates attempted this question. The analysis shows that 23.9 percent scored from 0 to 6.5 marks; 51.2 percent scored from 7 to 11.5 marks; and 24.9 scored from 12 to 20 marks. These data portray that the candidates' performance was good as 76.1 percent scored from 7 to 20 marks. However, only 6 candidates scored full marks. Figure 16 depicts the candidates' performance on this question.

Figure 16: The candidates' performance on question 7

The candidates who performed well the question managed to apply Balmer series of hydrogen spectra to determine the wavelength of the series limit of Paschen series. Most of them managed to explain why electrons do not fall into the nucleus due to the electrostatic force of attraction. In part (b) (i), the candidates described the reasons for the stability of the hydrogen atom in the ground state. For example, one candidate wrote, *hydrogen atom is stable in the ground state because at this stage there is no state of lower energy to which a downward transition can occur*. In part (b) (ii), they managed to apply Bohr's theorem to express the mathematical equation of angular momentum, that is $L = \frac{h}{2\pi}n$. Hence, they used the correct formula to calculate the angular momentum. Extract 21.1 shows one of the responses by a candidate who answered the question correctly.

7.000	Solo
	Consider the parchen series:
	, '
	0 0,6
	03
	The state of the s
	n n
	· For first Rodiation, 1, =?
	from $\frac{1}{\lambda} = \frac{R_H}{N_3^2} \frac{1}{N_2^2}$
	λ [13 12].
	$\lambda = N_3$
	Rut.
	But PH= 1.0974 X10 m
	h = 3 ^t
	1.0974X10m
	>= 8.2×107 m.
	· For Second Radiahun.
	$\frac{1}{\lambda} = R_{+} \left[\frac{1}{n_{2}^{2}} - \frac{1}{n_{+}^{2}} \right]$
	1 0694 4 4 1 1 1 1
	$\frac{1}{\lambda_{2}} = \frac{1.0974 \times 10^{12} \times 1 - 1}{3^{2} \times 4^{2}}.$
	λ ₂ = 1.87 × 10 6 m.
	-: The parchen series limit wavelength are
	-: The parchen series limit wavelength are from 8:2x10m to 21.87x10m.
7000	The electrons do not fall to the Mudeur because;
(1(6,1)	The engine do not fail to the face of berdute,
	- The Energy possessed by electron in a given
	orbit is constant and does not lose energy
	In form of Radiation and while the Electrosta-
	to force force provides only centripetal force
	By clasters to not it its north which has seen
	Per electron to orbit its path which has zero workdone, and hence electron can not fall to
	Pueleus.

bi) Hydrogen atom is stable at ground state because it has minimum potential energy at the
use it has minimum potential energy at the
ground state.
in From Biohr's postulate
ii) From Richals postulate L = nh.
211
Where L = Angular momentum.
Where L = Angular momentum. h = planck's constant.
n= Ofbit Rumber.
iii) soln.
Energy of a given orbit, En = - 3:4eV.
Angular momentum, L = ?
from En = - 13 6 eV.
h2.
- 2.4eV = - 13/6eV
73:
n = 13'bev
n = 13'bev
n= &.

7.5m	Fran Rohe:	
	fram Bohr: L= nh	
	211	
	L = 2x 6.6x163451.	
	2.1	
	2.4	
	L= 211 x 10 kgm3.	
	The Angular momentum of Electron 1 2 2.1 × 10 34 kg m² 5!	
	2.1 x (034 kg m251.	
67.		
9,5	The lines X to F were formed due Jeries	
	of de-excitation through different energy level	
	from higher to lower and on each de-excitation	
	of de-excitation through different energy level from higher to lower and on each de-excitation the Radiation of a given wavelength le produced	
	A to F lines X to F In a given line spectrum	
	A to F lines X to F In a given line spectrum	
	of an element.	
ii)	Soln.	
	Energy value for line A, E = - 1'51 eV.	
	To the state of th	
	50 from In = - 12.6 eV	
	, n	
	U = \(-13.6eV \)	
	-1.21eV	
	n 2 3	
7.c)ij		
7 - 2.0	Hence, the spectrum belongs to Paschen series because the electron desexuites from the higher	
	energy level to third energy level.	

Extract 21.1: A sample of the correct response provided by the candidate.

In Extract 21.1, the candidate correctly addressed the question by following correct procedures, applying correct formulas and executing the calculations accurately.

The candidates who scored low marks in this question had insufficient knowledge of atomic physics notably about the structure of the atom and nuclear physics. Some of them confused the quantum number of the orbit of Paschen series and that of other series. For example, one candidate substituted the quantum number $n_1=2$ and $n_2=3$ in finding the lower limit of wavelength of Paschen series instead of $n_1=3$ and $n_2=4$. As a result, he/she obtained an incorrect value. They also failed to provide the correct explanation in part (b) (i) and (ii); most of them gave insufficient reasons for the stability of the hydrogen atom in the ground state. Additionally, they used the wrong formula to calculate angular momentum. For instance, one of the candidates used the formula for linear momentum $P=\frac{h}{\lambda}$ derived from the dual nature of matter as a result of de-Broglie wavelength equation instead of angular momentum $L=\frac{h}{2\pi}n$ derived from Bohr's model of the atom. Extract 21.2 is a sample of poor responses by one of the candidates.

7 (a) Ba mensenies
N=2 N2=3
padien tenes
n ₁ 23, n ₂ 24,
$\frac{1}{1} = \frac{nh \times \left(1 - \frac{1}{h^2}\right)}{n^2}$
$\frac{1}{2} = P2H = \left(\frac{1}{(2)^2} - \frac{1}{(3)^2}\right)^2$
$\frac{1}{\lambda} = 1.0974 \times 10^{7} \times 0.1875$
λ= 4.85×10 m
Wavelength (1) = 4.85 x10 m.

7(11) Electrons denot foll juto the nucleus due to the feet that electron when excited they posses higher energy which over comes relectorstatic fone between nucleus and electrons
(b) (1) Hydrogen is stable due to the fact that at ground state Hydrogen atom has no higher excitation energy
(i) h/2/-
7 (b) (iii) SE= En- E. =-13:6ev- (-3.4ev)
10 10. Lev
p= b/2.
BB = he/
d= hc/
$\lambda = \frac{6.63 \times 10^{-2} \times 3 \times 10^{8}}{19}$
10. LX 10. 2x 16x 25 1. 989x 10-25
1.672×16
$d = 1.22 \times 10^{-7} \text{ m}$

Non 1022×10 angular moment on P) (0) this is due the radiation electron energy when an (i) 0 (ii) 7-10 belongs to

Extract 21.2: A sample of incorrect response given by a candidate.

In Extract 21.2, the candidate applied an irrelevant formula and procedures to perform calculations to all parts of the question, leading to incorrect answers.

2.2.8 Question 8: Atomic Physics

The question contained parts (a), (b) and (c). In part (a), the candidates were required to give the meaning of the following terms as used in nuclear Physics: (i) mass defect and (ii) binding energy. In part (b) the candidates were given the equation of disintegration of $^{238}_{92}U$ which gives alpha particles represented as $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$. They were required to calculate (i) the total energy released in the disintegration reaction and (ii) the kinetic energy of alpha particles when the nucleus was at rest before disintegration. Part (c) required the candidates to (i) elaborate two aspects on which fission reactions differ from fusion reactions and (ii) explain why high temperature is required to cause nuclear fusion.

A total of 11,228 (59.4%) candidates attempted this question. Among them, 57.7 percent scored from 0 to 6.5 marks; 34.5 percent scored from 7 to 11.5 marks; and 7.8 percent scored from 12 to 20 marks. The analysis shows that the performance on this question is average since 42.3 percent scored from 7 to 20 marks. Figure 17 illustrates the candidates' performance on this question.

Figure 17: The candidates' performance on question 8

The candidates, who scored good marks in this question had an adequate knowledge of atomic physics specifically about nuclear reactions. These candidates managed to define the terms *mass defect* and *binding energy*. However, some of them failed to use the nuclear reaction for the disintegration of $^{238}_{92}$ U represented by the reaction $^{238}_{92}$ U $\rightarrow ^{234}_{90}$ Th+ 4_2 He. They failed to use the reaction $^{238}_{92}$ U $\rightarrow ^{234}_{90}$ Th+ 4_2 He to calculate the total energy released in the disintegration reaction and the kinetic energy of alpha particles when the nucleus was at rest before disintegration. Most of them managed to elaborate the aspects in which fission reactions differ from fusion reactions. They also explained correctly the need of high temperature to cause nuclear fusion. For example, one candidate correctly wrote the difference between fission reactions and fusion reactions as:

The aspects in which fission reactions differ from fusion reactions are: In fission, heavy nucleus splits into nuclei with less weight while in fusion, nuclei of light atoms fuse together to form heavy nucleus". Also, "fission occurs at room temperature when low energy is absorbed by the nucleus but fusion occurs at extremely high temperatures.

Extract 22.1 is a sample of correct responses to this question by one of the candidates who answered correctly almost all parts of the question.

between the actual mass mass of the nucleus of an an atom to the Sum of the mess of the nucleons. (ii) Binding energy. This is the energy required to liberate all nucleons from the nucleur of an atom:	8. 6 (1) Mass defect - This is the difference
(ii) Binding energy. This is the energy required to fliberate all nucleons	of the nucleus of an an atom to
required to fliberate all nucleons	the meleons.

86)	279, 234	
	92 U -> 90 /h + 2/He.	
	16 90' 2	
	(1) Frez veleasod	
	60/h	
	hass defect = hess of (d) the ofte)- hass of get in a mu.	
	238 92 2	
	has of it have.	
NB	not provided in form of anu.	
	not provided in form of any.	
1	1 1 to 10	
8(P)	But the differee obtained above will be the change in mass (Sm)	
	be the change in piaes (Sm)	
	treng released = Bmc2 (Firsten)	
	equation	
	this will be converted into mer	
	this will be converted into mer By the reletion 1 any = 991 mer. X = 7	
	1 any = 921 mev.	
	x = >	
	(
	the value of x will be obtained in mer	
0/67	as the whole of a Il to the and	
86)	So the value of x will be the energy velocited during the dignite gration in	
	and the distance of the	
	in Mer.	
(db)	(i) ICE of & - porticle.	
	238 Counter.	
	924 (M) Softer desintegration	
	A Jac	
	boute graper V2 (m) V1.	
	234 ~ (61/0)	
	5 (() () () () () () () ()	
	Cofey ving remention	
-	$MV = m_1 V_2 - m_1 V_1$	
	But V=0 (armin being being	

861	$M_1V_1 = M_2V_2$ $V_2 = M_2V_1 (1)$ $M_2 .$ $V_3 = M_2V_4 (1)$ $M_3 .$ $V_4 = M_1V_2 (1)$ $M_4 = M_2V_4 (1)$ $M_5 (1)$ $M_7 (1)$ $M_7 (1)$ $M_7 (1)$
(ii)	V2 = MU ()
	Mz.
	KE of 2 and Th = Total energy released.
	2442+ & M2 V2= X.
	KMUN + & Mr (MIN) 2 = X
	KMU)2+ 1 m/2 m/2 m/2 =x
	myt
	LAUIZ = LAUZVIZ = X. Mullephy by My both Fides
	2 -M2
	hullophy by My both Sides
	1 MH2 M2 + 1 M12 M2 = X M2
	1 My M2 (M1+m2) = XM2.
	V/h) 1. (411)
	$\frac{\chi m_2}{M_1-em_2} = \frac{\chi m_1 N_2}{\chi m_2}$
	My-emz 2
	But & MUN 2 = KE of & particle.
	KEZ - XMZ
	(Mi-emz)
	where X - p he the g released energy
	So $kE_{d} = \frac{234}{23499} = \frac{334}{238} = \frac{334}{238}$
	2387

(c)	(i)	
	(1) Jusion Rection	Lission reaction
	7	
	(1) Involves the combi-	(1) Tawlves the desinte.
	netion of two or more	gration of a
	lighter micher to	Single heavy
	netion of two or more lighter micles to form a single heavy heavy	gration of a Single heave nucles into two
	heavy mucleus	or more lighter
		muclei.
	(i) The Jusion reaction	does gives small amount of energy compared to
	produces huge amount	does gives Small
	of energy and also	amount of energy
	of energy and also	Compared to
	remportures so as to	fusion reaction also
	Rom combine for the	fue on reaction also
	nucley' to form a	require large amounts
	larger meclans.	of energy, therefore
	combine for the mide! to form a larger mideus. hence not easily	the Sission reactions
	sustained in the	require large amounts Le energy therefore The fission reactions Can be sustained in
	nuclear reactor	a nuclear reactor
	10/	
8(2)	(ii) Puclear Jusion	takes is the Combination
	of two or more lig	the nuclei to form
	a single heavy non	elens so in order
	to combine these light	ter meles larges
	amount of energy	In form of heat
	15 required to / Cans	e fusion as to
	+ overcome mu	clear repulsion
	that can arise in con	bining the lighter
	(ii) Puclear fusion of two or more light a single hears non to combine these light amount of energy is required to aus forestone nu that can arise In Com mucley, so, because of this temperature.	it requires high
	tempolitie.	/ 75

Extract 22.1: A sample of a good response provided by a candidate.

In Extract 22.1, the candidate managed to define the terms, give a clear explanation, and differentiate fusion from fission reaction correctly.

The candidates who attained low marks in this question did not understand the basic concepts of atomic physics. These candidates failed to define mass defect and binding energy. In order to define these terms as used in nuclear Physics, the candidates were supposed to know that the mass of a nucleus is smaller than the sum of the masses of the constituent nucleons.

Therefore, the mass defect is the difference between the sum of the masses of nucleons (protons and neutrons) in the nucleus and the actual mass of the nucleus. They were also supposed to understand that the binding energy of the nucleus is provided by the mass defect and, therefore define binding energy as the total energy required to liberate all the nucleons from the nucleus. In part (b), they failed to study the disintegration of $^{238}_{92}$ U which gave the alpha particles represented by the equation $^{238}_{92}$ U \rightarrow $^{234}_{90}$ Th+ $^{4}_{2}$ He. The candidates were required to determine the mass defect in a.m.u and then convert it into energy.

Similarly, they failed to calculate the kinetic energy of alpha particles when the nucleus was at rest before disintegration. For example, one candidate used the formula for kinetic energy of a moving body in linear motion as " $K.e = \frac{1}{2} \text{ m v}^2$ " to calculate the kinetic energy of alpha particles when the nucleus was at rest before disintegration instead of using the relation, $K.E = \frac{Mass\ of\ thorium}{Mass\ of\ thorium+mass\ of\ helium} \times total\ energy\ released,\ Q \quad in \quad nuclear\ reactions. Consequently, some candidates failed to elaborate the aspects in$

reactions. Consequently, some candidates failed to elaborate the aspects in which fission reactions differ from fusion reactions. In this item, the candidates were supposed to know that fission occurs from splitting a heavy nucleus into lighter nuclei accompanied with the release of less energy per gram. On the other hand, fusion reactions occur from a combination of lighter nuclei to form a heavier nucleus which is accompanied with the release of more energy per gram. Extract 22.2 is a sample of incorrect responses to the question.

800	Mass defect - is the charge
(1)	in mass of an element (always
	decreasing) as the peoult of
	change in energy: The mass of
	a substance Change in energy hence
	The mass of the whole substance
	degrage From the original one.
(ii)	Binding energy :- 1sthe enggy
	produced of the result of
	mass defect: when a mass of
	object change to produce energy.

80	(i) Fission reaction regult to the of more particles: - particle disintegrate while furtion reaction regult to Formation of a body: - particles joint join to Formation large body.
a)	two of mie particles: - particle disintence
	while
	Justin reaction regult to Franchian
	of a body :- particles joint join to
	Fin large body.
	/ /
	(11) Fission Produce energy: High
	(11) Fission Produce energy: High energy is produced duping four Fission while tryion require energy: Itraph energy is consumed duping fusion reaction.
	build agent 1
	Pageon is Consul during - 179h
	crosy of consumed waying juston reachon.
8 c	11
ais	High femperative is required to cause mudeer pussion because:
	Cause mudeer Fusion because:
	1: A mike 1 Fin do the
	must be in agreed trying together
	must be in gatern from then I ?: The material must be
	In Ionic Form - High Inigy 4
	Material From its physical State
	matified from 17) physical State
	To ionii state : in Enery to ionize the material. 3: Then of much energy if required to combine the placeton together since they is high
	3: Then of much energy
	Il required to combine the plaction
	Together Sma thise is high
	particles (Protons): Due to this
	parties (protons): Due to this repulsive fora of protons as well
	as before election I remselves
-	thin together. Jequited to make
	Briefly: imitation rougy Is ends thermal as well as seant electron affinity is and thermal
	endothermal as well as
	second electron affinity is endsthering
-	during huder fusion.
	dufing muded Justim.

Extract 22.2: A sample of incorrect response provided by one of the candidates.

In Extract 22.2, the candidate failed to define the terms and explained incorrectly some concepts. Consequently, he/she failed to differentiate fission reaction from fusion reaction.

2.2.9 Question 9: Electromagnetism

This question was comprised of parts (a), (b) and (c). In part (a), the candidates were required to (i) identify four factors that affect the force experienced by a current-carrying conductor in a magnetic field, (ii) write the mathematical expression which defines magnetic flux density and use it to deduce its S.I units and (iii) apply the expression obtained in 9 (a) (ii) to develop the formula for the force on a conductor carrying current I if the conductor and the magnetic fields are not at right angles. In part (b), they were required to (i) distinguish the terms magnetically soft and magnetically hard materials, (ii) state the condition which makes the magnetic force on a moving charge in a magnetic field to be maximum and (iii) determine the magnitude of force experienced by a stationary charge in a uniform magnetic field. Part (c) required the candidates to (i) identify the position of the rotating coil in the magnetic field where the induced e.m.f is zero and give the reason and (ii) use a mathematical expression to justify the statement that there will be no change in the kinetic energy of a charged particle which enters a uniform magnetic field when its initial velocity is directed parallel to the field.

A total of 2,366 (12.5%) candidates attempted this question. Among them, 36.8 percent scored from 0 to 6.5 marks; 36.3 scored from 7 to 11.5 marks; and 26.9 scored from 12 to 20 marks. From the analysis, the candidates' performance was good since 63.2 percent scored 7 marks and above. Figure 18 portrays the performance of the candidates on this question.

Figure 18: The candidates' performance on question 9

The candidates who performed well in this question managed to identify the factors on which the force experienced by a current-carrying conductor depends. They were also managed to write the mathematical expression which defined magnetic flux density $(B = \frac{F}{IL})$ and used it to deduce correctly its S.I units which is $(Nm^{-1}A^{-1} \text{ or } Tesla)$. They also applied the mathematical expression for the magnetic flux density $B = \frac{F}{IL}$ correctly to develop the formula for the force on a conductor carrying current I, if the conductor and the magnetic fields are not at right angles. They also managed to distinguish magnetically soft and magnetically hard materials. These candidates stated precisely the condition which makes the magnetic force on a moving charge to be maximum. They also determined the magnitude of the force experienced by stationary charge in the uniform magnetic field.

Additionally, with reasons, they managed to identify the position at which the induced e.m.f becomes zero when the coil rotates in the magnetic field. Finally, they applied the correct mathematical expression to justify that no change in kinetic energy of a particle when it enters parallel to a uniform magnetic field. This indicates that most candidates who attempted the question had a good knowledge of electromagnetism especially about the magnetic forces on current carrying conductors in a magnetic field. Extract 23.1 is a sample of the correct responses to this question by one of the candidates.

09. a/i/- Magnetic flux density of o(B) of a magnetic field when the
aiment-carrying conductor pre-
sent
- the length of a current-comp
ng conductor (L).
- Current Tol a current - carry ino
conductor is a magnetic field.
- the Angle (0) between the
magnetic field and the current
cornying conductor.
, , , , ,
of L= RITRUG

F= BVQ but Q= It V= /L. F= BL/. It F= BLL include 5 no i. F= BIL include 5 no i. F= BILGIND (hence developed) b/ i/ Magnetically soft material are those materials which manners shape in hydres curve as having small magnetic flux dentity and higher intently of magnetic flux dentity and higher intently of magnetic sation to basing weak magnetic sation to basing weak magnetic and diamagnetic. Little
b) i Magnetically seft material are those materials which mamps shape in hydren curve as having small magnetic flux durally and higher intendity of magnetic sation, also having weak magnetication are paramagnetic and diamagnetic. Little
b) i Magnetically seft material are those materials which mamps shape in hydren curve as having small magnetic flux durally and higher intendity of magnetic sation, also having weak magnetication are paramagnetic and diamagnetic. Little
b) i Magnetically seft material are those materials which mamps shape in hydren curve as having small magnetic flux durally and higher intendity of magnetic sation, also having weak magnetication are paramagnetic and diamagnetic. Little
b) i Magnetically seft material are those materials which mamps shape in hydren curve as having small magnetic flux durally and higher intendity of magnetic sation, also having weak magnetication are paramagnetic and diamagnetic. Little
b) i Magnetically seft material are those materials which mamps shape in hydren curve as having small magnetic flux durally and higher intendity of magnetic sation, also having weak magnetication are paramagnetic and diamagnetic. Little
b) i Magnetically seft material are those materials which mamps shape in hydren curve as having small magnetic flux durally and higher intendity of magnetic sation, also having weak magnetication are paramagnetic and diamagnetic. Little
b) i Magnetically soft material are those materials which manner strape in hydres curve as having small magnetic flux durally and higher intendly of magnetic sation, also having weak magnetical example are paramagnetic and diamagnetic.
moterals which with name stape in hydren curve as having small magnetic flux durally and higher intendity of magnetic sation, also having weak magnetical example are paramagnetic and diamagnetic.
moterals which with name stape in hydren curve as having small magnetic flux durally and higher intendity of magnetic sation, also having weak magnetical example are paramagnetic and diamagnetic.
curre as hawing small magnetic flux dunnity and higher intendity of magnetic sation, also having weak magnetication toward magnetic and diamagnetic. Little
dennity and higher intentity of magnetic sation also having weak magnetic anadeximagnetic and diamagnetic. Little
ore paramagnetic and diamagnetic.
are paramagnetic and dramagnetic.
WHILE
Magnetically hard materials are thuse materials which has wide shape in
represented in hydreon Curre and hos
stronger magnetization effect lovarding
magnet. Example is ferromagnetic like from Lhich is stringer ferroma-
anotic and hence called magnetical
hard material.

Extract 23.1: A sample of the correct response provided by a candidate.

Extract 23.1, is a sample of the correct answer by the candidate who managed to provide precise descriptions, systematic procedures and calculations in all parts of the question.

As for the candidates who scored low marks in this question, they lacked sufficient knowledge about electromagnetism. They failed to identify the factors that affect the force experienced on current-carrying conductor. For example, one candidate mentioned the factors as "nature of materials, temperature and resistance of a conductor" which some of them are the factors affecting the resistance of the conductor instead of magnitude of current I, length of conductor L, magnetic flux density B and angle between the direction of the field and the conductor. They also failed to distinguish magnetically soft from magnetically hard materials. These candidates failed to recall that magnetizedly hard materials retain their magnetism for a long time once magnetized and are characterized by having low retentivity and greater coercivity while magnetically soft materials do not retain their magnetism, though they are easily magnetized. Such materials have high retentivity and low coercivity.

Moreover, some candidates failed to give the correct condition that maximize the magnetic force on a moving charge in magnetic field. In this item, the candidates were supposed to realize that, for the magnetic force on a moving charge to be maximum, a charge should move perpendicular to the direction of the magnetic field. That is, from $F = qvBsin\theta$, when $\theta = 90^{\circ}$, $sin\theta = 1$ and the value of F becomes maximum. Some candidates related the centripetal force with the magnetic force due to the electric field. Thus, they failed to continue as the conceptual approach was absolutely inappropriate. Other candidates failed to state the position at which the induced e.m.f becomes zero when the coil is rotating in the magnetic field. These candidates failed to recognize that the e.m.f becomes zero when the axis of the coil is perpendicular to the magnetic field lines. That is, if $E = E_0 cos\theta$, $\theta = 90^{\circ}$ and $cos90^{\circ} = 0$; therefore the induced e.m.f is zero. Extract 23.2 shows one of the responses by the candidate who provided incorrect answers to all parts of the question.

09. (1)	fuely.	
0	1) Miture of the meetricals.	
	11). Temporature	
	in Resistance of a conjuctor.	

09	(\$) (2)
	(4#)
	b(?). magnetically Joft it ocur vul to the meetering magnet may eth;
	to the meetering may not may eth
	1 E) a loft which have not
	mere magnet cultrultion of a large
	Substances whole pegaetically heigh
	meterial, cur muterial, when
	news more obility of magnet pow
	60,
9	(b) (b) condition force magnific force to
,	Le maximum magnot doer not
	centalin impurities.
	3
	(ii)
_	

Extract 23.2: A sample of incorrect response provided by a candidate.

In Extract 23.2, the candidate failed to provide correct responses to all parts of the question.

3.0 ANALYSIS OF CANDIDATES' PERFORMANCE PER TOPIC

3.1 Candidates' Performance per Topic

The analysis of the candidates' performance on each topic reveals that, in Physics paper 1, they performed well in three topics which are *Measurement* (86.1%), *Electronics* (69.2%) and *Environmental Physics* (64.4%). They also performed averagely in two topics which are *Mechanics* (58.6%) and *Heat* (51.2%). The average performance on these topics was influenced by the lack of adequate knowledge. Few candidates failed to attempt some parts of various questions especially those which demanded critical thinking, aiming at assessing higher order of learning outcomes. Some candidates seemed to have a poor background in mathematics as they failed to analyse and interpret the given data values for correct procedures and accurate calculations. However, they had weak performance in the topic of *Current electricity* (32.3%). Such performance might have been contributed by the failure to apply the correct formula for a particular quantity. For example, some candidates applied Ohm's law to determine the value of conductance instead of using the reciprocal of the resistance of

a given device. Another factor was the failure to identify the direction of electric current, flow of current at different points in the circuit, and the use of Kirchhoff's laws when traversing round the loops. These factors caused most candidates fail to formulate the required equations and to use appropriate mathematical approaches to obtain the correct answers.

In Physics paper 2, the analysis shows that among the six (06) topics that were tested, the candidates demonstrated good performance on five (05) topics, which are Fluid dynamics (88.3%), Properties of matter (80.9%), (72.3%). **Electrostatics Vibrations** and waves (68.6%)Electromagnetism (63.2%). They demonstrated average performance on only one (01) topic which is Atomic Physics (59.2%). The average performance in this topic was stemmed from the lack of knowledge about the distinctive features of mass defect at the expense of binding energy, inability to differentiate fission nuclear reactions from fusion nuclear reactions, and incompetence in analysing, the data given and using proper formula to solve problems involving computation. The summary of the candidates' performance on each topic tested in ACSEE 2019 for both paper 1 and paper 2 is shown in Appendix A.

3.2 Comparison of Candidates' Performance on each Topic and in terms of Grades between 2018 and 2019

When comparing the performance of the candidates in the topics tested in ACSEE 2018 and 2019, a rise and fall in performance in some topics is evident. The reflection of the candidates' performance portrays a considerable increase in performance from 86.6 percent in 2018 to 88.3 percent in 2019 on the topic of *Fluid dynamics*. Another substantial increase in performance was observed on the topic of *Measurement* in which the candidates' performance in 2018 was 81.5 percent in comparison to 86.1 percent in 2019.

Furthermore, a massive increase in performance was observed on the topics of *Properties of matter* (53.5%), *Electrostatics* (37.0%) and *Electronics* (53.2%) in 2018 as compared to 80.9 percent, 72.3 percent and 69.2 percent on the same topics in 2019 respectively. This remarkable increase in performance on these topics indicates that teachers and students improved their methods of teaching and learning as the students performed averagely on all three topics in 2018. The topic of *Vibrations and waves* had a slight increase in performance from 64.3 percent in 2018 to 68.6 percent in 2019.

Moreover, performance on the topic of *Environmental Physics* highly improved from 24.2 percent (weak) in 2018 to 64.4 percent (good) in 2019. This signifies that teachers and students succeeded in raising the performance on this topic as it had been done poorly in recent years. Another measurable increase in performance was observed on the topic of Electromagnetism, which increased from 43.5 percent in 2018 to 63.2 percent in 2019. In contrast, the performance on following topics remained the same in 2018 and 2019, though there were small differences. These topics include Atomic Physics (57.8%), Mechanics (42.0%) and Heat (55.0%) in 2018 while the performance on the same topics were 59.2 percent, 58.6 percent and 51.2 percent in 2019 respectively.

Despite this good performance on the cited topics, the topic of Current electricity still needs to be debated on to improve candidates' performance. The performance of the candidates on this topic remained the same but only differed in magnitude from 20.9 percent in 2018 to 32.3 percent in 2019. Although there is a notable change in the candidates performance, deliberate measures should be taken to improve the performance on this topic in future examinations.

When the grade performance of candidates is compared between the years 2018 and 2019, 0.36 percent scored A_s in 2018 while 0.26 percent scored the same grade in 2019. Similarly, 4.2 percent obtained B_s in 2018 while the same grade was scored by 3.6 percent of the candidates in 2019. From this analysis, the number of candidates who scored A_s and B_s in 2018 was greater than those scored the same grades in 2019.

Further analysis reveals that more candidates attained grades C, D and E in 2019 in comparison to those sat the examination in 2018. Nevertheless, more candidates (11.38%) obtained the subsidiary grade S in 2018 than those who scored the same grade in 2019. Like-wise, poor performance (13.44%) was observed more among the candidates who sat the examination in 2018 than among the candidates (10.81%) who sat the examination in 2019.

In general, more than 50 percent of the candidates who did the examination in 2018 and 2019 scored D and E grades. However, the performance of candidates in 2019 was better than in 2018. A summary of the comparison of the candidates' grade performance on each topic tested in ACSEE 2019 for both Physics paper 1 and 2 compared to the year 2018 is shown in Appendices B and C.

4.0 CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion

The analysis of the candidates' performance per question in the Physics examination in 2019 revealed that most of the candidates attempted well the questions, although some of them faced difficulties in responding to the questions. The major challenges which were identified through this analysis include the following:

(a) Inadequate knowledge about some concepts

This caused some candidates to score low or no marks in some items or question as they provided incorrect responses to the question. This may have been caused by poor coverage of some topics by the teachers, ineffective revision of the candidates as well as inadequate exercises/tests /examinations and corrections which could enhance the candidates' understanding and easy retrieval of the required concepts in each topic.

(b) Lack of mathematical skills

This made some candidates to perform some calculations incorrectly either due to errors in writing formulae, executing the calculation or failure to recall the formulae.

(c) Failure to understand the demand of the question

This was caused by language barrier. Some candidates failed to understand the demands of the question especially in relation to the items which required explanation.

(d) Failure to answer all parts of the questions

Some candidates did not address all the questions given. This might be caused by their failure to cope with the required speed when doing the examination or lack of knowledge.

Although the candidates faced some challenges in attempting the questions in ACSEE 2019 in both Physics paper 1 and 2, their performance in 2019 has greatly improved, compared to 2018. Appendices A and B reveal that eight (8) topics out of twelve (12) were performed well, three (03) topics were performed averagely

and only one (01) topic was performed poorly. This indicates that the majority of the candidates had sufficient content knowledge. They were also good at answering questions involving calculations. In general, the candidates' performance has increased by 2.65 percent.

4.2 Recommendations

In order to improve the performance of the candidates in future, the following are the recommendations:

- (a) Teachers and students should put much effort on the topics which are frequently performed poorly. The emphasis should be put on the topic of Current electricity. Teachers have to apply appropriate approaches in guiding students through deducing and applying Kirchhoff's laws of electrical networks.
- (b) Teachers should encourage students to do effective revision by giving them adequate tests and examinations in order to improve their speed in attempting examinations. They should also be given group assignments, home works, project works, field excursions/trips which in turn promote the spirit of learning through participation.
- (c) Teachers should teach using experimentations and demonstrations to assist students in acquiring and grasping the concept, knowledge and skills in the topics of Mechanics and Heat, which were performed averagely.
- (d) Teachers should guide students and make a close follow up to help each student during classroom teaching and learning.
- (e) Students have to prepare well in each topic by reading various Physics books and journals to improve their understanding of the concepts, theories, principles and laws.
- (f) Students should practise effectively on how to identify the demand of the questions especially those which require explanations in order to improve language competencies.

 $\label{eq:Appendix A} \mbox{CANDIDATES' PERFORMANCE IN EACH TOPIC ON THE YEAR}$

Appendices

Appendix B

COMPARISON OF THE CANDIDATES' PERFORMANCE ON EACH TOPIC BETWEEN 2018 AND 2019

		2018 EXAMINATION PAPER			2019 EXAMINATION PAPER		
S/n.	Topic	Number of questions	Percentage of Candidates Who Scored an Average of 35 Percentage or Above	Remarks	Number of questions	Percentage of Candidates Who Scored an Average of 35 Percentage or Above	Remarks
1	Fluid Dynamics	1	86.6	Good	1	88.3	Good
2	Measurement	1	81.5	Good	1	86.1	Good
3	Properties of Matter	2	53.5	Average	1	80.9	Good
4	Electrostatics	1	37	Average	2	72.3	Good
5	Electronics	3	53.2	Average	3	69.2	Good
6	Vibrations and Waves	2	64.3	Good	2	68.6	Good
7	Environmental Physics	1	24.2	Weak	1	64.4	Good
8	Electromagnetism	1	43.5	Average	1	63.2	Good
9	Atomic Physics	2	57.8	Average	2	59.2	Average
10	Mechanics	5	42	Average	5	58.6	Average
11	Heat	2	55	Average	2	51.2	Average
12	Current Electricity	2	20.9	Weak	2	32.3	Weak

COMPARISON OF THE CANDIDATES' PERFORMANCE IN GRADES BETWEEN 2018 AND 2019

Appendix C

